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Introduction

m Sequential decision-making: concerns an agent making
a sequence of actions based on its behavior in the
environment.

m Reinforcement learning has achieved tremendous success
on sequential decision-making problems, i.e., training
agent to play games on Atari 2600, which enables to learn
human-level control policy (Mnih et al., 2015).
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m By contrast, human learning can be faster.
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Introduction m Learn from multiple information resources, including
environmental reward signals, human feedback, or
demonstrations.

m A unified framework where knowledge-based planning,
reinforcement learning, and human feedback jointly
contribute to the policy learning of an agent.



Background: Action Language
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declarative, logic-based language that describes dynamic
domains.

m Dynamic domains can be represented as a transition
Background System .
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Action Language BC

Human- Action Language BC (Lee et al, 2013) is a language that

Centered

Planning and describes the transition system using a set of causal laws.

Learning

m dynamic laws describe transition of states
move(x, y1, y2) causes on(x, y»2) if on(x, y1).
m static laws describe value of fluents inside a state

Background

intower(x, y2) if intower(x, y1), on(y1, y2).
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Background: Reinforcement Learning
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m Reinforcement learning is defined on a Markov Decision
Process (S, A, P, r,7).
m S, A denote the state and action spaces.
m transition probability model PZ,.
m reward function r.
m discount factor ~.

m To achieve the maximal cumulative reward, a policy
m: S8 x A [0,1] is learned by the agent.
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m Symbolic Planner: generates the symbolic plan based on
the sampled facts.

m Actor-Critic Learner: learns from the experience by
executing the symbolic plan.

m Human Feedback: interpreted as an estimation of
advantage function.
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Sample-based Symbolic Planning

caman, m Sample-based planning problem is defined on tuple (/, G,
g 79, D):
® initial state condition /.
m goal state condition G.
m a stochastic policy function 7p.
m action description D, which contains a set of facts sampled

from my.

m A simple planning example.

timestamp 1 : timestamp 2 : timestamp 3 :
sampled facts at {p(1, moveright, 1), {p(1, moveright, 2), {p(1, moveright, 3),
each timestamp p(2, moveleft, 1), p(2, moveleft,2), Pp(2,moveright,3),

p(3, moveright, 1)} p(3, moveright,2)} p(3,moveleft,3)}

3-grid with sampled

actions :><:l:> I:><:ll:> I:>I:><:|

symbolic plan 1: {moveright} 2:@ 3 : {moveright}
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Actor-Critic Architecture
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m Critic: state-value function Vi that criticizes the action
taken by the learner.

m Actor: policy function 7y that is used for action selection.

m Advantage function: how much better or worse an action
a is compared to the current policy at state s.

m Temporal difference(TD) error: r(s,a) + v Vi(s") — Vi(s).
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Human Feedback
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m Human feedback for making decision is dependent on
learner’s current policy (MacGlashan et al., 2017).

m Advantage function provides a better model of human
feedback.

m Guide exploration towards human preferred behaviors.
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Experiment Setting
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Lyu, Yang m Domains: four rooms and taxi.

Liu, G
m Baseline methods:
= BQL (Griffith et al., 2017).
m TAMER+RL (Knox & Stone, 2012).
m Actor-critic with human feedback.

Experiment . 1 1
R m Two scenarios: helpful or misleading human feedback.

and Results

m ideal case.

m inconsistent case.

m infrequent case.

® infrequent+inconsistent case.
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Four Rooms Domain
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Scenarios on Four Rooms
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) Human feedback

Experiment I
and Results

’ Human feedback

m Helpful feedback: consider an experienced user that
wants to help the agent to navigate safer and better.

m Misleading feedback: consider an inexperienced user
who doesn’t know there is a dangerous area, but

mistakenly wants the agent to step into those red grids.
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Taxi Domain
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Experiment
and Results
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Scenarios on Taxi
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» Human feedback

m Helpful feedback: consider a passenger may suggest a
path that would guide the taxi to detour and avoid the
slow traffic during the rush hour.

m Misleading feedback: consider a passenger who is not
familiar enough with the area and may inaccurately inform

the taxi of his location before approaching the passenger.
21 /24



Results about Helpful Feedback
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Conclusion and Future Work
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Ly m A unified framework that simultaneously considers prior
S knowledge, learning from environmental reward and
human feedback, which enables “human-centered planning
and learning”.

m A significant jump-start at the early stage, which
accelerates the learning process.
m Robustness.

Conclusion

and Future | Future Work.

Work

m More difficult tasks with high-dimensional sensory input.
m Autonomous driving or mobile service robots.

24 /24



	Introduction
	Background
	Method
	Experiment and Results
	Conclusion and Future Work

