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Sequential Decision-Making

Sequential decision-making: concerns an agent making
a sequence of actions based on its behavior in the
environment.
Reinforcement learning has achieved tremendous success
on sequential decision-making problems, i.e., training
agent to play games on Atari 2600, which enables to learn
human-level control policy (Mnih et al., 2015).
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Difficulties

“Data-hungry” and “time-hungry”.

Slow initial learning process with bad performance level of
the initial policy, due to learning from scratch.

By contrast, human learning can be faster.
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Our Solution

Human Learning

Embodied with prior and abstract knowledge.

Learn from multiple information resources, including
environmental reward signals, human feedback, or
demonstrations.

Solution

A unified framework where knowledge-based planning,
reinforcement learning, and human feedback jointly
contribute to the policy learning of an agent.
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Background: Action Language

Action language (Gelfond & Lifschitz, 1998): a formal,
declarative, logic-based language that describes dynamic
domains.

Dynamic domains can be represented as a transition
system.
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Action Language BC

Action Language BC (Lee et al., 2013) is a language that
describes the transition system using a set of causal laws.

dynamic laws describe transition of states

move(x , y1, y2) causes on(x , y2) if on(x , y1).

static laws describe value of fluents inside a state

intower(x , y2) if intower(x , y1), on(y1, y2).
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Background: Reinforcement Learning

Reinforcement learning is defined on a Markov Decision
Process (S,A,Pa

ss′ , r , γ).
S,A denote the state and action spaces.
transition probability model Pa

ss′ .
reward function r .
discount factor γ.

To achieve the maximal cumulative reward, a policy
π : S ×A 7→ [0, 1] is learned by the agent.
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PACMAN: Planner-Actor-Critic architecture for
huMAN-centered planning and learning

Symbolic Planner: generates the symbolic plan based on
the sampled facts.
Actor-Critic Learner: learns from the experience by
executing the symbolic plan.
Human Feedback: interpreted as an estimation of
advantage function.
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Symbolic Planner
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Sample-based Symbolic Planning

Sample-based planning problem is defined on tuple (I , G ,
πθ, D):

initial state condition I .
goal state condition G .
a stochastic policy function πθ.
action description D, which contains a set of facts sampled
from πθ.

A simple planning example.
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Actor-Critic Learner
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Actor-Critic Architecture

Critic: state-value function Vx that criticizes the action
taken by the learner.
Actor: policy function πθ that is used for action selection.
Advantage function: how much better or worse an action
a is compared to the current policy at state s.
Temporal difference(TD) error: r(s, a) + γVx(s ′)− Vx(s).
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Human Feedback
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Human Feedback

Human feedback for making decision is dependent on
learner’s current policy (MacGlashan et al., 2017).

Advantage function provides a better model of human
feedback.

Guide exploration towards human preferred behaviors.
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Experiment Setting

Domains: four rooms and taxi.

Baseline methods:

BQL (Griffith et al., 2017).
TAMER+RL (Knox & Stone, 2012).
Actor-critic with human feedback.

Two scenarios: helpful or misleading human feedback.

ideal case.
inconsistent case.
infrequent case.
infrequent+inconsistent case.
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Four Rooms Domain

Task: navigate from the initial position to the goal
position.
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Scenarios on Four Rooms

Helpful feedback: consider an experienced user that
wants to help the agent to navigate safer and better.

Misleading feedback: consider an inexperienced user
who doesn’t know there is a dangerous area, but
mistakenly wants the agent to step into those red grids.
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Results about Helpful Feedback
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Results about Misleading Feedback
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Taxi Domain

Task: navigate to the passenger, pick up the passenger,
then navigate to the destination and drop off the
passenger.
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Scenarios on Taxi

Helpful feedback: consider a passenger may suggest a
path that would guide the taxi to detour and avoid the
slow traffic during the rush hour.
Misleading feedback: consider a passenger who is not
familiar enough with the area and may inaccurately inform
the taxi of his location before approaching the passenger.
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Results about Helpful Feedback
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Results about Misleading Feedback

23 / 24



Human-
Centered

Planning and
Learning

Lyu, Yang,
Liu, Gustafson

Introduction

Background

Method

Experiment
and Results

Conclusion
and Future
Work

Conclusion and Future Work

A unified framework that simultaneously considers prior
knowledge, learning from environmental reward and
human feedback, which enables “human-centered planning
and learning”.

A significant jump-start at the early stage, which
accelerates the learning process.
Robustness.

Future Work.

More difficult tasks with high-dimensional sensory input.
Autonomous driving or mobile service robots.

24 / 24


	Introduction
	Background
	Method
	Experiment and Results
	Conclusion and Future Work

