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Abstract: Although promising results have been achieved in the restoration of complex illumination images with the Retinex
algorithm, there are still some drawbacks in the processing of Retinex. Considering the noise characteristics of complex
illumination images, in this study, we propose a novel restoration algorithm for noisy complex illumination, which combines
guided adaptive multi-scale Retinex (GAMSR) and improvement BayesShrink threshold filtering (IBTF) based on double-density
dual-tree complex wavelet transform (DDDTCWT) domain. Extensive restoration experiments are conducted on three typical
types images and the same image with different noises. On the basis of a series of evaluation indexes, we compare our method
to those of state-of-the-art algorithms. The results show that (i) SSIM of the proposed IBTF is superior to traditional Bayes
threshold method by 15% as the standard variance is 100. (ii) PSNR of the proposed GAMSR enhances 15% to traditional
MSR. (iii) The clarity of final results for restoration speeds up three times than that of original images, and the information
entropy is improved slightly too. Therefore, the proposed method can effectively enhance the details, edges and textures of the
image under complex illumination and noises.

1 Introduction
The digital image is referred to as one of the important sources of
information. High-quality image under appropriate illumination is
easy to process for information extraction. However, images
captured in different conditions sometimes suffer from visibility
degradation because the light is changing and the signal of the
camera is interfered through unevenness media, such as fog, haze
and noise. Fig. 1 shows five different images degraded by low
brightness, low contrast and unevenness. It is obvious that complex
illumination affects greatly on the quality of images. Developing an
effective method to restore all the details of images collected in
complex illumination is desirable. 

Image restoration is always a fundamental problem in computer
vision and has received increasing attention in the past few years
[1]. Image restoration in complex illumination images with noise
can improve the quality of these defective images, which not only
provides rich details of the whole image [2, 3], but also extracts the
local feature area [4, 5].

The mainstream technologies of image restoration on complex
illumination images are based on the physical model [6] and tensile
transformation [7, 8]. The former methods commonly establish a
physical model considering the cause of fog formation, but it is
difficult to make sure the accurate and effective of this model for
various scenes. By devising and analysing properties
transformation of the image, the latter aims at recovering the foggy
images and fundamentally compensates for the loss of image
details caused by complex illumination [9]. Moreover, the later
mainly uses image histogram equalisation [10, 11], homomorphic
filter [12–14], wavelet transform (WT) [15, 16] and Retinex
transform [17, 18] for fog images or other low-quality images.
However, there are too more thresholds and parameters to lead loss
of information and lack of robustness for the method above. In this
paper, we mainly focus on improvements to the latter mentioned
methods.

The histogram equalisation method is to adjust the grey value of
each pixel according to the rule of uniform distribution of
probability, so as to improve the brightness and contrast of the

image. However, this method performs poorly since it always
produces over-enhancement and loses details in the areas, where
histograms are densely distributed. On the basis of the model of
image illumination and reflection components, homomorphic
filtering is an approach of image restoration by combining the grey
transformation and frequency-domain filtering. This method is
skilled at improving the contrast of low-illumination images,
whereas the result of restoration looks slightly dark [19]. The WT
is also well applied to noise reduction which helps to get clean
images such as the wavelet combines morphology or partial
differential equations to achieve denoising [20]. In addition, the
wavelet algorithm selects threshold and threshold function to
improve performance on restoration [21]. The Retinex algorithm is
built on the theory of colour constancy based on the visual
representation of human [22, 23]. In recent years, this method has
ignited much interest in the field of image restoration, and the
improvement of Retinex algorithm mainly focuses on optimising
kernel function and weight value in multi-scale Retinex (MSR)
algorithm. The purpose is to eliminate the problems of halo,
artefact and unnatural enhancement in MSR. These methods
involve too many parameters; besides, these parameters are fixed
values set by experience, which brings the algorithm some
limitations.

Overall, to address these mentioned problems, we conduct
many experiments about the restoration of complex illumination
images in different scenes with different noises, and the main
contributions of our work can be summarised as follows.

Contributions: Unlike most of the existing approaches,
considering the effect of the global vision, we propose a new way,
the guided adaptive MSR (GAMSR) and improvement
BayesShrink threshold filtering (IBTF), which is based on double-
density dual-tree complex WT (DDDTCWT) domain. This novel
algorithm completes the restoration of images with noise and
complex illumination and obtains state-of-the-art performance by
extensive experiments.

The main contributions of this paper are three-fold:
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i. We introduce the DDDTCWT to image restoration, and then
original images are decomposed into high-frequency subband
and low-frequency subband. It makes a great performance to
restore the images polluted by noise and reduce the impact of
complex illumination.

ii. We propose the GAMSR for low-frequency subband from
DDDTCWT. Our GAMSR replaces the Gaussian function with
guided filtering and devises the adaptive weight coefficient,
which avoids selecting the unreliable coefficient by experience.
Solely due to this design, could our method achieve the images
with a clear edge and more details.

iii. We present the IBTF to deal with high-frequency subband.
Taking the advantages of soft threshold and hard threshold into
consideration, we innovatively develop a new hierarchical
threshold to IBTF. It has achieved a great success in denoising,
especially on the occasion where the noise decreased
exponentially with the increasing decomposition layers.

2 Related work
In this section, we briefly review previous works related to our
method and clarify the difference between them. Specifically, we
present related studies from two aspects: (i) Retinex transformation
and (ii) wavelet threshold denoising.

2.1 Retinex transformation

Existing Retinex restoration approaches are usually based on
traditional algorithms which were put forward by Land in 1971
[24]. The initial theory uses original image I(x, y) and in density
image R(x, y) estimated by some methods as the input of the
Retinex.

It aims at recovering the latent clean image R(x, y) from its
degraded observation I (x, y), which may be produced by noise
contamination and complicated illumination introduced during the
image acquisition.

The estimation of L(x, y) is key to Retinex processing and has
been extensively studied in primal research. For example, Land et
al. [25] proposed to select a pathway randomly among N pathways
to obtain L(x, y) [25]. McCann and Frankle et al. designed a spiral
section comparison path, which selects a path from different
random paths [26]. The standard centre/surround Retinex algorithm
[27] was to extend the estimation L(x, y) by McCann et al. When
studying the Gaussian winding path, Jobson et al. [28] present
single-scale Retinex (SSR) and MSR algorithms. The SSR chooses
sole scale parameter σ, which cannot obtain enhancement of details
and colour fidelity simultaneously and the MSR introduces the
small, middle and big scale parameters into restoration, which

solve the SSR problem perfectly. A Retinex algorithm based on
bilateral filtering and mean shift filtering is becoming a hot topic
recently [29]. The function of bilateral filtering is denoising and
retaining edge information filtering. Synthesising of pixels light
and location, Hu et al. [30] introducing bilateral filtering into
eliminating the halo. Zhou et al. [31] utilised that the mean shift
filtering adopts the kernel density estimation to restore image
colour.

These works exist some defects such as halo artefacts, multiple
iterations and gradient inversion in Gaussian, mean shift and
bilateral filtering [32]. Complementary to the above works on
image restoration, we conduct a dedicated study on filtering
selection and accordingly come up with two solutions that address
the crucial issues existed in image restoration. We propose a guide
filtering to maintain the image boundary and texture feature to
obtain image L(x, y) [33]. In addition, we design an adaptive
weight coefficient that effectively optimises the result of image
brightness and contrast restoration, which is another major
challenge for this task [34].

2.2 Wavelet threshold denoising

The basic methods of wavelet denoising consist of modulus
maxima denoising, wavelet coefficient correlation denoising,
wavelet threshold denoising and so on. Moreover, the most famous
method is the wavelet threshold denoising because of its simple
realisation and a small amount of calculation [15, 35, 36]. We will
analyse some representative methods for wavelet threshold
denoising from threshold processing function and selection of
threshold [37].

For threshold processing function, the hard threshold is easy to
appear the pseudo-Gibbs effects and while the wavelet coefficient
is larger than the threshold, soft threshold wavelet comes out a
constant deviation [38, 39]. To improve the inherent defects of soft
and hard threshold methods, Gao and Bruce [40, 41] jointly
proposed a semi-soft threshold function and the Minimax threshold
processing method. However, this method is computationally
complicated and is not good at the smoothness of the restored
image. Then, Garrotte threshold processing function was put
forward in [42]. The threshold function is continuous at the
threshold, but its recovery image still has defects of poor
smoothness. The threshold function described in this paper not
only has a good pro-approximation in the hard threshold function,
but also has the advantage of continuity of the soft threshold
function.

For a selection of threshold, one famous benchmark is
VisuShrink. It is the first proposed threshold estimation function by
Donoho and Johnstone [43]. Although its actual application effect

Fig. 1  Common complex illumination scenes
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is not good, it triggers more attention to the threshold. The
threshold obtained by the SUREShrink method is close to the ideal
value [44], but it is computationally complex and many noises
cannot be filtered out. Resembling SUREShrink method,
BayesShrink [45]. Threshold estimation reduces many deviations
so that it is more effective and less computational. In our work, we
build a hierarchy threshold estimation formula for image
restoration to solve the problem that the Bayesian threshold
estimation only reaches a global optimum and cannot achieve local
optimums.

3 Complex illumination image restoration
algorithm based on DDDTCWT
Discrete wavelet transformation (DWT) with multi-resolution
becomes a powerful multi-scale analysis tool, due to its ease of
implementation and low complexity [46]. However, there are some
drawbacks in two-dimensional DWT such as poor directional
selectivity, lacking translation invariance, vulnerability to data and
easy to appear artefact in the analysis of image under complicated
illumination condition. These papers develop a fusion technology
base on DDDTCWT to reinforce images captured under
complicated illumination condition. Taking the causes of
complicated illumination and characteristics of the image with
noisy contamination into account, this paper presents IBTF and
GAMSR methods to process the decomposed low frequency and
high frequency of images by DDDTCWT. At the same time, we
also establish a series of objective and subjective criterion systems
to evaluate our approach.

3.1 Algorithm description

Our research adapts the DDDTCWT, which decomposes the
original image into 4 low-frequency subbands and 32 high-
frequency subbands. The main power of image distributes on the
low-frequency subbands, which are the similarity and average of
the original image. The high-frequency subbands represent the
details of the image such as the edge, outline and noise. Since each
of subband coefficients has different physical significances, we
need to adapt the different methods to restore the low-frequency
and high-frequency subbands. During restoring the high-frequency
subbands, we focus on the elimination of noise and retention edges
etc. The theoretical basis of DDDTCWT is that heavy and small
absolute amplitude of the wavelet coefficients were caused by
signal and noise. If adapted suitable elimination noise model, we
can eliminate small noise coefficients. During the low-frequency
subbands, we concentrate on the impact from the complex light.

The optimising Retinex algorithm is applied to minimise the effects
of complex lighting. The algorithm is given as follows (see Fig. 2):

i. Obtain image I for recovery.
ii. Adapt DDDTCWT to image I, get the four low-frequency

pictures Ia, Ib, Ic, Id and 32 high-frequency pictures
I1, I2, …, Ii, i from 1 to 32.

iii. Use the IBTF to the 32 high-frequency pictures and get the 32
pictures I1′, I2′, I3′, …, Ii′, i from 1 to 32.

iv. Use the GAMSR to the four low-frequency pictures and get
four pictures Ia′, Ib′, Ic′, Id′.

v. Use the inverse WT to the result of pictures, get the final
enhanced image.

vi. Evaluate the final picture.

4 Restore the high-frequency subbands
4.1 Improved threshold processing function

According to the thought of Garrotte threshold processing and
combining with the advantages and disadvantages of the soft
threshold, we propose the following threshold functions:

f (x, y) =

i(x, y) − T + T × 1 − eT − i(x, y)

1 + eT − i(x, y) i(x, y) > T

0 |i(x, y) | ≤ T

i(x, y) + T − T × 1 − eT + i(x, y)

1 + eT + i(x, y) i(x, y) < − T

(1)

We introduce soft and hard thresholds into (1), whose merits
contain continuity of a function, asymptote to f (x, y) = i(x, y) and
any higher-order derivative differentiable. Owing to the function
continuous at the threshold, it overcomes the drawback that the
traditional hard threshold function is prone to turbulence and
pseudo-Gibbs effect. In asymptote f (x, y) = i(x, y) selection, we
find that when the wavelet coefficient increases, the f (x, y) gain on
the wavelet coefficients, which overcome the problem of constant
deviations in traditional soft threshold functions. At the same time,
any higher-order derivatives can be differential, making the
function easier to implement more complex operations.

As shown in Fig. 3, the red, blue and green parts are the result
of the algorithm we proposed, hard threshold and soft threshold.
We can find that our proposed threshold function performance is
close to the soft threshold when the absolute value of wavelet

Fig. 2  Algorithm flowchart
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coefficient is less than the threshold value and it is close to the hard
threshold when it is over the threshold. However, there is a gentle
change when absolute value reduces to the threshold, which is
superior to the hard threshold method. It is the threshold transition
zone that enables the new threshold function is more similar to the
natural signal function. That is why the threshold function
described in this paper has the advantage of the hard and soft
threshold functions. 

4.2 Bayesian threshold estimation and modification

After many original images and noisy images decomposed by a
wavelet, their wavelet coefficients approximately obey Gaussian or
Laplace distribution, which is named general Gaussian
distributions

GGβ, σx(x) = C(β, σx)e−(α(β, σx) | x | )β (2)

The standard deviation estimation formula of generalised Gaussian
distribution is given by Grace Chang et al.

σx
2 = 1

N j
∑ωj(x, y)2 (3)

where σx
2 is the standard deviation, ωj(x, y) represents the number

of high-frequency coefficients in the wavelet coefficients and N j is
the corresponding subband wavelet coefficient values.

σn
2 represents the variance of the noise. If we cannot predict the

noise of the image in advance, we will adapt the method named
median estimator to estimate the noise. The median estimate is
defined as follows:

σn = median( | i(x, y) | )
0.6745 , i(x, y) ∈ HH j (4)

where i(x, y) denotes bandpass coefficient in high-frequency land
HH j.

We define σβ as the variance estimation of the source image,
and it is calculated as follows:

σβ = max σx
2 − σn

2, 0 (5)

The Bayesian threshold calculating formula is given by

T =
σn

2

σβ
σβ ≠ 0

max ( | i(x, y) | ) σβ = 0
(6)

where T is a Bayesian threshold. Bayesian threshold estimation
reduces a lot of errors. It is pointed out in the literature [47] that the
estimated error of the Bayesian threshold is within 5%, why it has
been widely applied.

Since the estimation of Bayesian threshold has been
satisfactory, we improve the performance from other aspects. The
global thresholds are used to the conventional Bayesian threshold
approach. Although the calculation of the global threshold is easy,
it just satisfies the global optimal and cannot achieve local optimal.
For example, because the first-layer wavelet decomposition
coefficient is usually very small, the result of Bayesian threshold
estimation will be small. However, the second wavelet is not such
as that. That is why this global threshold cannot meet the needs of
wavelet decomposition, from which we will improve the algorithm
performance.

In our method, the improvement of the algorithm is mainly
based on the average modulus of noise and the average modulus
maxima according to the index rules attenuation characteristics
with the increase of decomposition layers. Contrasting to the noises
decreasing rapidly as the number of decomposition layers increase,
the image signal will not be decreased significantly. Therefore, we
propose a hierarchical threshold estimation formula as follows:

TAB = e(s − L/2/L)TB (7)

where L is the largest scale of wavelet denoising, s represents
current decomposition scale and TB indicates the Bayesian
threshold estimation result.

5 Restore the low-frequency subbands
5.1 Guided AMSR

As processing the low-frequency subbands, we introduce guided
filtering into the MSR algorithm, which greatly improves the MSR
performance with guided filtering's ability to retain edge
information.

The guidance filter is a partial multi-point filter, which benefits
to maintain the detail. Using the box filters, we define the degree of
guided filtering by customising ε. It is necessary to introduce
guided images before the image edge is preserved. The guided
images usually are taken themselves or take the feature image-by-
image segmentation and feature extraction [48]. The grey-scale
value of the ith pixel of the bootstrap image is denoted as

qi = ∑
j

ωi j(I)pj (8)

where I presents guided image, p is the input image, q is the output
image, i and j indicate pixel coordinates and ωi j is the filter core.

We suppose that the guided image I and the output image q are
linearly dependent and q is a linear transformation relationship
with I in a small window ωk, in which k is the centre. Therefore,
the formula is defined as

qi = akIi + bk, ∀i ∈ ωk (9)

where ak and bk are linear coefficients supposed to the constant.
This local linear model guarantees that when q is the edge, I is also
the edge because of the linear gradients. This model has been
proven effectively in many applications.

To confirm the values of ak and bk, we define a minimised cost
function, which makes the difference value between input and
output image minimal. The definition of minimised cost function is
as follows:

E(ak, bk) = ∑
i ∈ ωk

(akIi + bk − pi)2 + εak
2

(10)

where ε is a regularisation parameter between 0 and 1 to prevent
the result of ak too big. The bigger ε is, the heavier smooth
multiples superposition is. The above results are obtained by linear
regression defined as follows:

ak =
(1/( |ω | ))∑i ∈ ωk Iipi − uk p̄k

σk
2 + ε

(11)

where |w| is the number of pixels in the window ωk, uk and σk
2 are

the mean value and the variance of I in the window ωk and p̄k is the
mean value of P in the window ωk

bk = p̄k − akuk (12)

qi = 1
|w| ∑

k, i ∈ ωi

(akIi + bk) = ākIi + b̄k (13)

āi = 1
|ω| ∑

k ∈ ωj

ak (14)

b̄i = 1
|ω| ∑

k ∈ ωj

bk (15)
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Having adapted the first-order gradient calculation on both sides at
the same time, we conclude the formula ∇qi = āi∇Ii, which
satisfies the need of linear relation. Therefore, guided filtering has
very good edge maintaining characteristics. Meanwhile, ak
determines the degree of maintaining the edge of the image. The
smaller ak is, the more degraded and smoother image edge is.

On the basis of the above theoretical basis, we conclude that ε
and ak used in guiding filtering determine the output image ability
which can keep the edge of image complete and smooth. During
the transform of Retinex, we used the guiding image instead of a
Gaussian function to make the convolution to get the final result
which is estimated illumination information.

5.2 Formula of weight coefficient calculation

In the classical MSR algorithm, the selection of coefficient usually
depends on experience, which is also the global coefficient.
Whether the selection of coefficient is suitable or not determines
the brightness and contrast of the restoration image. A number of
reference coefficients given by many documents float up and down
around 0.3, which has different recovery effects to the different
image. To raise the objective weight coefficient, we do the
following work.

Assuming that the original image is divided into N blocks, we
define Hi as the local entropy for images of the ith block and define
Q as the mean entropy for the image. The calculation formula of Q
is as follows:

Q = 1
N ∑

i = 1

N
Hi /8 (16)

The calculation formula of the local contrast is as follows:

P = 1 − 1
m̄

1
N ∑

i − 1

N
(mi − m̄)2 (17)

where mi is the average grey scale for the image of the ith block
and m−  is the average grey scale of the whole image.

The calculation formula of the weight coefficient is as follows:

p1 = (P + Q + 1)/3 (18)

p2 = (1 − w1) × 2/3 (19)

p3 = (1 − w1)/3 (20)

We combine the calculation formula of weight coefficient with
GAMSR, which is the main algorithm to solve the complex image
in this paper.

6 Experiment
6.1 Different methods of image recovery

To verify the real recovery ability of our method in the noisy image
restoration, it is compared with the improved histogram
equalisation method in [49] and the homomorphic filtering method,
Retinex enhancement algorithm based on bilateral filtering [30]
and the literature [25] based on WT enhancement algorithm by
comparative experiments.

The experiment uses MATLAB 2015b in the Win 7 platform for
testing. The scale coefficients of the MSR are set to 20, 80 and 180.
The first is recovery denoising experiment. We choose noise-
containing pictures to test image recovery ability with the above
methods.

In this section, three types of images are selected. The first type
is a low-contrast resistance strain gage image. From Fig. 4a, it can
be seen that the strain gage image to be restored has low contrast,
overall whitening and grey points. The primary purpose of image
enhancement is to increase the contrast of the strain gage image to
highlight the cross-bar details. The results of image restoration are
shown in Figs. 4b–f. Fig. 4b is the enhancement result of
homomorphic filtering. Homomorphic filtering solves the problem
of overall whitening of the picture. However, it also reduces the
brightness of the image, which results in the obscure of the
horizontal grid area of the image. The method in [49] is shown in
Fig. 4c. Although the improved histogram method in [49] greatly
improves the overall contrast of the image, it enlarges the grey
speckles of the image and causes great disturbance for the image
recognition. Fig. 4d shows the Retinex transformation algorithm
based on double-sideband filtering in [30]. As shown in Fig. 4d,
the result has higher brightness and contrast, which is clearer in the
horizontal bar area. However, Fig. 4d does not eliminate the grey
spots, and the enhancement of the area around the black triangle
above the graph is still not enough. Literature [25] is a traditional
wavelet-based image enhancement algorithm. The result of this
restoration is slightly better than the method of [49]. On the other
hand, the contrast of the enhanced result is still low and has a
certain degree of the grey-shift phenomenon. Fig. 4f is our
recovery algorithm. Intuitively, the method in this paper is more
superior than the above methods. The edge of the strain gage image
after the restoration of our algorithm is clearer and has better
contrast; it also weakens the level of grey spots in Fig. 4a and
highlights details well. 

We evaluate the above results objectively with information
entropy H, peak signal-to-noise ratio (PSNR) and sharpness J. The
evaluation results are shown in Table 1. To show the recovery
results of various methods clearly, we make Table 1 into Fig. 5. It
can be seen from Table 1 that the restoration result of
homomorphic filtering has limited improvement to PSNR and
sharpness. We can see from the recovery pictures that the PSNRs
of literatures [49, 25] are not much different, but the information
entropy varies greatly, which also points out the limitation of the
objective evaluation of the image (see Fig. 6). 

Fig. 3  Paper's threshold function (best viewed online in colour)
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The recovery method in this paper provides the best PSNR and
sharpness. From various evaluation indexes, our algorithm has very
good enhancement ability for low-contrast images.

The second category is the image with low overall illumination.
We adopt the night image captured by a surveillance camera.
Owing to the lack of illumination, the entire image is black and it is
difficult to distinguish the characteristics of the image. Fig. 6b
shows the result of homomorphic filtering. Since the illumination
of the original picture is low, the homomorphic filtered picture is
more blackish, which is not even as good as the original picture.
Literature [49] has a better ability to recover this type of image, but
there is an unnatural increase in the image and a slight halo on the
road and sky. The details of the literature [30] are relatively clear,
but one part is brighter and clearly enhanced. The picture processed

with the method of literature [25] is integrally whitening, and the
effect of image restoration is moderate. Although after processed
with the paper's method, the brightness of the image is slightly low,
it can distinguish the texture features on the road surface.

Table 2 is an objective evaluation result of the above pictures.
Similar to the above methods, the histogram equalisation method in
[49] still has this highest PSNR value. From the objective
evaluation histogram of the night surveillance image in Fig. 7, it is
clear that our algorithm is only slightly lower than the histogram
equalisation method on the PSNR evaluation, and it is ahead of
other algorithms on the sharpness J evaluation. 

The third category is the image of the forest under the shadow.
Since the Sun is blocked by trees, the whole image has a distinct
alternation of light and shade, which affects the image recognition.

Fig. 8b shows the result of homomorphic filtering. 
Homomorphic filtering emerges black spots near the roots of trees
and land, which completely removes mottled sunshine. It makes
the picture look very unnatural and have poor readability. The
effect of enhancement is very strong with the method in the
literature [49]. The trees and the bark part can be seen, but the
ground becomes white, which makes contrast too obvious.
Although owing to excessive enhancement in the sunlight part, the
recovery of sunlight gives a dazzling sensation in the literature
[30], the twigs of the trees are still clearly visible. The enhanced
image in the literature [25] is not as strong as the literature [30]. Its
overall contrast is general, and the trunks in the vicinity can be

Fig. 4  Recovery results of resistance strain gauges with different methods
(a) Original drawing, (b) Homomorphic filtering, (c) [49], (d) [30], (e) [25], (f) Our
algorithm

 
Table 1 Recovery results of resistance strain gauges

PSNR J H
original drawing — 1.085 6.869
homomorphic filtering 12.186 1.078 6.5612
[49] 17.551 1.780 7.910
[30] 19.429 2.318 7.522
[25] 15.976 2.050 6.961
our algorithm 23.732 2.941 7.573

 

Fig. 5  Objective evaluation results of normalised resistance strain gauges
 

Fig. 6  Recovery of night surveillance images with different methods
(a) Original drawing, (b) Homomorphic filtering, (c) [49], (d) [30], (e) [25], (f) Our
algorithm

 

Table 2 Objective evaluation results of night surveillance
images with different methods

PSNR J H
original drawing — 0.778 6.234
homomorphic filtering 12.971 1.175 5.581
[49] 21.281 2.178 7.230
[30] 15.336 2.113 7.022
[25] 14.976 2.055 6.861
our algorithm 18.731 3.061 7.073

 

Fig. 7  Objective evaluation results of normalised night surveillance
images

 

Fig. 8  Mottled forest images
(a) Original drawing, (b) Homomorphic filtering, (c) [49], (d) [30], (e) [25], (f) Our
algorithm
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clearly distinguished, but the enhancement effect to the distance is
poor.

The restored image in this paper is not strong, but it is enough
to see the tree's roots and the soil. Table 3 shows the results which
are an objective evaluation of restored forest images. Fig. 9
displays the histogram drawn on the basis of Table 3. Since the
whole image is much better than the previous, the PSNR and
information entropy value after recovery is relatively large. The
accuracy is similar after separately restoring in the algorithm
proposed in the literature [30], the literature [25] and this paper, but
our overall recovery index is still ahead of the above algorithms. 

By analysing the experimental recovery results of three
common types of complex illumination images, it is found that our
algorithm can provide the maximum sharpness and information
entropy under the condition of same weak noise. The algorithm
proposed in [30] is also superior to traditional homomorphic
filtering and the improved histogram equalisation method in the
literature [49]. We have proved that the traditional Gaussian
Retinex can easily amplify the noise and generate the halo.
Therefore, we will use the method in the literature [30] to carry out
denoising experiments with our algorithm.

6.2 Algorithm of denoising enhancement experiment

Hu et al. [30] pointed out that Retinex based on bilateral band
filtering has a good ability to suppress noise. To verify the ability

of our algorithm to eliminate different noises, we select the method
proposed in the literature [30] to check the test. Gaussian white
noisy images with an increasing mean value from 0 to 100 are
used. The following are the result images.

Fig. 10 shows the experimental results under small noise. It can
be seen from the figure that the restoration algorithm in the
literature [30] is slightly light and bright, and the local contrast in
the bright area is not enough, which affects the observation of some
details. Although the recovery result of our algorithm is slightly
darker, the restoration is more natural. 

In Fig. 11, the Gaussian noise variance is between 40 and 60.
From recovery results, the results which are processed separately
with these algorithms appear to amplify the noise partially in such
a noise case. However, the result of our algorithm has less noise. 

Fig. 12 is the restored image under strong noise interference.
The variance of noise is between 70 and 90. The quality of the
recovery results is degraded by both methods. However, our
algorithm is still superior to the literature [30]. As can be seen from
Table 4, both the PSNR and the structural similarity (SSIM) values
of two algorithms are decreasing while noisy variance increases.
However, the decrease of our algorithm is less. We take the picture
as an example whose mean variance is equal to 50. The value of
PSNR result gotten by our algorithm is 22.7, whereas it dropped to
19.4 when the picture is processed by the method proposed in the
literature [30]. Moreover, the value of mean squared error (MSE)
also clearly shows the difference between the two methods. The
smaller the value of MSE is, the more similar the noise-free
recovery result is. The method proposed in this paper can basically
filter out most of the Gaussian noise when the noise variance is
<50. Since the method of noise suppression is used in the literature
[30], the MSE value of a recovered picture is larger. The sharpness
of the two methods has a considerable difference. Therefore, our
algorithm is obviously superior to the method in the literature [30]. 

Table 3 Objective evaluation results of forest image
PSNR J H

original drawing — 1.787 7.672
homomorphic filtering 14.330 1.166 7.365
[49] 18.559 0.498 7.906
[30] 22.642 3.730 7.321
[25] 18.094 3.491 7.433
our algorithm 25.508 4.667 7.699

 

Fig. 9  Objective evaluation results of normalised forest images
 

Fig. 10  Comparison of two restoration algorithms under small noise
(a) σ = 10, (b)σ = 20, (c)σ = 30 [30], (d) σ = 10, (e) σ = 20, (f) σ = 30 Our algorithm

 

Fig. 11  Comparison of two restoration algorithms under middle noise
(a) σ = 40, (b)σ = 50, (c)σ = 60 [30], (d) σ = 40, (e) σ = 50, (f) σ = 60 Our algorithm

 

Fig. 12  Comparison of two restoration algorithms under strong noise
(a) σ = 70, (b)σ = 80, (c)σ = 90 [30], (d) σ = 70, (e) σ = 80, (f) σ = 90 Our algorithm
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To show the difference between the two methods in PSNR and
SSIM intuitively, the graphs of SSIM and PSNR variation with
noise variance has been plotted according to the aforementioned
data. As shown in Fig. 13, the red line is our algorithm and the blue
line is literature [30]. It can be seen clearly from these pictures that
our algorithm changes smoother with the increase of noise. The
algorithm mentioned in the literature [30] is not only easy to be
influenced by noise, but also numerically fluctuated greatly. 

7 Conclusions
In this paper, a restoration algorithm of images with noise and
complex illumination is proposed, which involves DDDTCWT and
MSR transform. This algorithm first decomposes the original
images into low-frequency subbands and high-frequency subbands
with DDDTCWT. Then, the illumination is mainly distributed in
low-frequency subbands and the noise is mainly distributed in
high-frequency subbands. We exploit improved MSR transform
and Bayesian denoising methods to deal with two kinds of
subbands, which make high-frequency subbands denoised and
preserve the edge and low-frequency subbands minimise the
illumination complexity. Finally, the restored images come out
after utilising inverse WT. The experimental results show that the
proposed method can effectively optimise the details, edges and
textures of the complex illumination images, it can also reduce the
noise and improve the contrast [33].
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