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Abstract Image question answering (IQA) has emerged as a promising interdisciplinary topic in computer vision and

natural language processing fields. In this paper, we propose a contextually guided recurrent attention model for solving

the IQA issues. It is a deep reinforcement learning based multimodal recurrent neural network. Based on compositional

contextual information, it recurrently decides where to look using reinforcement learning strategy. Different from traditional

“static” soft attention, it is deemed as a kind of “dynamic” attention whose objective is designed based on reinforcement

rewards purposefully towards IQA. The finally learned compositional information incorporates both global context and

local informative details, which is demonstrated to benefit for generating answers. The proposed method is compared with

several state-of-the-art methods on two public IQA datasets, including COCO-QA and VQA from dataset MS COCO. The

experimental results demonstrate that our proposed model outperforms those methods and achieves better performance.

Keywords image question answering, recurrent attention, deep reinforcement learning, multimodal recurrent neural

network, multimodal fusion

1 Introduction

Question answering (QA) is a well-defined topic in

natural language processing area. It is traditionally a

pure NLP (natural language processing)-related prob-

lem as both the question and facts that answers lie in

are in the form of language. However, as the research

goes deeper, people are not satisfied with the textual-

only QA, and inclined to extend it to vision area. When

textual facts are alternated by vision facts, there conse-

quently comes a newly defined research topic — image

question answering[1-4].

Image question answering takes an image and an

image content related question as inputs, and directly

infers a reasonable answer as an output automatically.

In IQA (image question answering), grounding infor-

mation on answering questions lies in the vision facts

from images. Therefore, in order to answer visual ques-

tions correctly, the IQA system needs to understand

both images and questions. This kind of multimodal

working mode is closely related to the cognition beha-

vior of human brain. It is a very challenging task, and

has attracted great interests from computer vision and

natural language processing areas.

A large number of architectures ranging from sym-

bolic to neural based framework have been proposed to

solve the IQA problem recently. Depending on the vi-

sual features used, they are categorized as: 1) explicit

visual representations on bounding box surrounding ob-

ject of interests, 2) holistic image feature, or 3) soft

attention to combine regional information. Bounding

boxes or soft attention based methods give much con-

cern on local visual information, neglecting global con-

text for understanding holistic semantics of an image.

Global representation based methods extract full im-

age content in a high level, inevitably losing important

local details for answer grounding.
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We believe that both global contextual information

and local conceptual details are helpful to correctly

answer visual questions. When doing the IQA task,

we generally perform holistic image understanding first

based on global context. Then, based on the learned

semantic information from specific questions, we pay

attention to some relevant details. At last, we compo-

site the global contextual understanding and local de-

tails as reliable vision evidence for question answering.

We identify this sequential way as “where to look under

contextual guidance”.

Under the presumption of sequential and hierarchi-

cal semantic understanding, we propose a contextual-

guided recurrent attention model for IQA in this paper.

Our proposed system is a deep multimodal recurrent

neural network. At each step, based on current com-

positional contextual information, it decides where to

look with reinforcement learning strategy, extracting

multi-resolution crops on predicted locations on fea-

ture mapping. The extracted regional information is

memorized into its internal representation which is re-

currently combined with the question and global visual

context to locate next informative region. The process

continues until reaching a predefined maximum itera-

tion for regional observation.

Compared with general “static” soft attention

methods, our proposed mechanism is dynamic. Un-

der the rewards of reinforcement strategy, our atten-

tions can be more purposeful towards IQA’s objectives.

Furthermore, compared with purely global representa-

tion, our learned compositional information includes

both global context and informative local details, which

bring many benefits to solve the IQA problem.

We train an end-to-end system for answer predic-

tion and grounding, and compare it with several state-

of-the-art methods on two public IQA datasets, COCO-

QA[1] and VQA from dataset MS COCO[3] (MSCOCO-

VQA for short). The experimental results demonstrate

that our method can achieve better performance.

The main contribution of this work is that we have

proposed a deep reinforcement learning based dynamic

recurrent attention mechanism for the IQA task. The

contextually guided attention mechanism can learn ef-

fective sampled “hard” attention trajectories through

reinforcement learning rewards. The local attention

trajectory possesses complementary detailed informa-

tion to global context, which can purposefully improve

the accuracy of IQA.

The rest of this paper is organized as follows. In

Section 2, related work is introduced. In Section 3, de-

tails of our proposed network are described. In Sec-

tion 4, comprehensive experimental comparisons are

presented. Conclusive remarks and discussion are given

in Section 5.

2 Related Work

2.1 Local Spatial Attention Based Methods

Visual attention based models have been extensively

explored for IQA in recent years. However, so far, all at-

tention models used in IQA literatures mainly focus on

a kind of soft spatial attention mechanism which takes

inspiration from the model proposed in [5] for image

captioning. The main differences among the methods

of this category lie in the functions from which soft at-

tention weights are computed.

Typically, the soft attention mechanism produces

a spatial map highlighting image regions relevant to a

question’s answers. It aligns question sentence/words

with candidate visual regions. Depending on questions,

it predicts spatial latent coefficients to weight the lo-

calized convolutional mappings in convolutional neural

network. The resulted weighted representation rather

than full image is then used as a basis for answering

questions.

Yang et al.[6] proposed a stacked attention network

to highlight question-relevant regions using multiple at-

tention layers.

In [7], the spatial mappings “inception 5b/output”

of GoogLeNet are used as images’ representation. Each

word embedding is used to perform fine-grained align-

ment between images and questions in its first attention

hop.

Chen et al.[8] introduced an attention-based configu-

rable convolutional neural network to locate attentions

based on input queries. It generates a configurable con-

volutional kernel through question embedding, and con-

volves it with image features to generate attention map-

pings.

In [9], top-ranked 99 edge boxes together with a full

image are used as candidate visual regions related to a

question’s answers. The region selection layer generates

attention weights by applying softmax on the inner pro-

duct of image features and text features.

The attention used in [10] depends upon the previ-

ous hidden state of recurrent unit and the convolutional

features. It also accepts a two-layer feed-forward net-

work to predict the attention weights.

Ilievski et al.[11] employed off-the-shelf object de-

tector to identify important regions and fuse the infor-
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mation from the regions and global features via LSTM

(long short-term memory). The criteria for selecting

objects are based on similarity scores between the ques-

tion words and the labels of objects.

Kumar et al.[12-13] proposed a dynamic memory net-

work in which the update gate of GRU (gated recurrent

unit) is replaced by an attention gate. The computation

of the attention gate is similar to traditional multiple

layer perception network.

Lu et al.[14] proposed a co-attention mechanism

which jointly explores visual attention and question at-

tention at different semantic levels.

Fukui et al.[15] proposed to utilize multimodal com-

pact bilinear pooling for efficient and expressive multi-

modal feature fusion, rather than traditional element-

wise multiplication, addition or concatenation. Their

used attention mechanism is similar to the soft one used

in [6].

2.2 Global Features Based Methods

In this category, image features used are all from

fully connected layer in convolutional networks. Global

features extract image contents in cost of spatial infor-

mation lost.

Noh et al.[16] proposed a dynamic parameter layer

dealing with multimodal combination for visual ques-

tion answering. Hashing trick is employed to predict

the weights in the dynamic parameter layer, avoiding

explosion of parameters’ scales.

Kim et al.[17] proposed multimodal residual net-

works for visual question answering. The visual fea-

tures used are global.

Andreas et al.[18] proposed to answer image-related

questions through collections of jointly-trained neural

“modules” based on linguistic structure.

Wang et al.[19] emphasized the importance of large

external knowledge on developing structured represen-

tation of image content.

Ma et al.[20] employed multimodal convolutional

network to learn the interactions between image and

question representations. They treated an image as an

individual semantic component and question words as

consecutive semantic components.

2.3 Recurrent Attention Model with
Reinforcement Learning

Mnih et al.[21-22] proposed a recurrent attention

model for object recognition. The recurrent model ex-

tracts information from an image by adaptively select-

ing a sequence of regions or locations. As we know, hu-

mans always focus attention selectively on parts of the

visual space to acquire information when and where it

is needed, and combine the information from different

fixations over time to build up an internal represen-

tation of the scene. Therefore, the recurrent attention

model has neuroscience and cognitive science basis. Be-

sides, it is also capable of reducing the computation cost

by only processing the selected regions at high resolu-

tion.

Li et al.[23] proposed a object detection model

named AC-CNN with multiple stacked LSTM lay-

ers. By incorporating multi-level information into the

region-based CNN, they reported better object detec-

tion performance.

3 Contextually Guided Recurrent Attention

Model for IQA

In this paper, we propose a deep reinforcement

learning based multimodal recurrent neural network for

IQA. It is built around a recurrent attention model

with contextual guidance, consisting of several sub-

components. The whole architecture of the proposed

model is as shown in Fig.1. For convenience, we use

the term “network” to describe its non-linear sub-

components since they are typically multi-layered neu-

ral networks in the following content.

convMap convMap
lt

gt
ht

mt

at lt

fg↼θg↽

fh↼θh↽

fc↼θc↽

fa↼θa↽ fl↼θl↽ fa↼θa↽ fl↼θl↽

fh↼θh↽

fg↼θg↽

lt↩1

gt⇁1
ht⇁1

mt⇁1

at⇁1 lt⇁1

ht↩1

q

fc

Fig.1. Architecture of deep reinforcement network with contex-
tual-guided recurrent attention.
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3.1 Model Architecture

convMap is a spatial feature mapping extracted

from CNN’s convolutional layer. lt is the location of

regional attention at time t. fg (θg) is a multimodal

glimpse network which combines the visual retina in-

formation with question information centered at lt on

convMap. fh (θh) is a GRU-based recurrent network

which is used to memorize the sequentially attended

information. ht is a hidden state accumulating multi-

modal memories at time t. fc (θc) is a multilayer net-

work for extracting contextual information. In this pa-

per, it directly takes the global feature “fc7” output

from CNN’s last fully-connected layer. The regional

multimodal information and context feature are used to

generate compositional feature mt. fl (θl) is a location

network, making predictions in sequence to next atten-

tion location. fa (θa) is a predicting network, which

produces possible answers for visual questions. These

subcomponents work collaboratively to solve the IQA

problem. In the following parts, we will describe them

respectively in details.

3.1.1 Multimodal Glimpse Network fg (θg)

The glimpse network acts as “eyes” of our IQA

agent. Its network is as shown in Fig.2.

(a)

Glimpse Sensor

Glimpse Network: fg↼θg↽Questions

(b)

Glimpse
Sensor

lt

lt

q

ρt↼lt↪I↽

ρt↼lt↪I↽
θg

θg

θg

gt

2

1

3

θg0

ρρρ

ρ

Fig.2. Multimodal glimpse network fg (θg).

Given location lt−1 and input image I, the glimpse

network uses a glimpse sensor to extract a multi-

resolution observation ρt (lt−1, I) centered at lt−1. It

extracts patches with pyramid scales and concatenates

representations of these patches.

Observation ρt and glimpse location lt−1 are then

mapped into a hidden space using fully-connected layers

parameterized by θ0g and θ1g respectively. Another fully-

connected layer θ2g is used to combine them. A question

is mapped into a space with the same dimension as θ2g
defines by using another separate fully-connected layer

θ3g .

In these cases, we denote θig to be the weight and

bias {W i
g , b

i} of each layer. Information from these two

kinds of sources, visual glimpse information and ques-

tion information, is concatenated to form a question-

related glimpse representation gt through element-wise

summation.

g0 = ReLU
(
W 0

g ρt + b0
)
, g1 = ReLU

(
W 1

g lt−1 + b1
)
,

gt = ReLU
(
W 2

g [g
0, g1] + b2

)
+ReLU

(
W 3

g q + b3
)
,

where ReLU(x) = max{0, x}.
3.1.2 Recurrent Attention Network fh (θh)

The recurrent network is the core sub-component,

acting as the memory part of our IQA agent. It aggre-

gates information extracted from individual glimpses

and combines them in a coherent manner.

We use gated recurrent unit (GRU)[24] as the core

network. At each time step t, GRU incrementally com-

bines the glimpse representation gt with the internal

state ht−1 at previous time step, and produces a new

internal state of model ht.

ht = (1− zt)ht−1 + zth̃t,
zt = σ (Wzgt + Uzht−1) ,

h̃t = tanh (Whgt + Uh (st � ht−1)) ,
st = σ (Wrgt + Urht−1) ,

where σ denotes sigmoid function, and h̃t is candidate

activation. ht−1 is the previous activation state. The

update gate zt decides how much the unit updates its

activation. st is a set of reset gate and � represents an

element-wise multiplication.

The activation of internal state ht summarizes the

information extracted from the past consecutive local

observations.

3.1.3 Context Network fc (θc)

Global feature fc provides contextual information.

In the viewpoint of hierarchial semantic understanding,

it can provide a big-picture on the top level. Herein, it

can also provide sensible hints on where the potential

interested regions are in a given image.
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For convenience, we transform the global feature fc

to a space f̂ c having the same dimension with ht using

one fully-connected layer. We combine the transformed

f̂ c with internal state ht to generate a compositional

feature mt by using element-wise summation.

As a result, mt contains both globally contextual

information and local experiences on sequential atten-

tions. The agent can more purposefully attend to the

next glimpse based on the compositional feature mt

and reinforcement rewards.

3.1.4 Location Network fl (θl)

The location network acts as a controller that di-

rects attention according to the currently aggregated

global and local information. It consists of a fully-

connected hidden layer, and takes the compositional

feature mt as input and makes a prediction on where

to extract the next image patch for the glimpse net-

work.

In this paper, we encode the real valued glimpse lo-

cation tuple lt by using a Cartesian coordinate that is

centered at the middle of the input image.

3.1.5 Answer Prediction Network fa (θa)

The answer prediction network, shown in Fig.3, is

composed of one hashing-based dynamic parameters

layer, one fully-connected hidden layer and a softmax

output layer for classification. It predicts a question’s

answer based on compositional visual information mt

and question information q. Depending on the pre-

dicted answer, it receives a reward r as a response.

mt at

q

Spatial
Hashing

Softmax

0.05

0.60

0.30

0.00

0.03

0.02

0.3

0.8

0.3

0.75

0.1

0.3

0.8

0.3

-0.25

0.1

-0.25

0.1

0.3

-0.25

0.8

0.75

Fig.3. Answer prediction network fa (θa).

The dynamic parameters layer in this network is

similar to the one in [16]. Its weights are determined

adaptively by a parameter prediction network. This

parameter prediction network is a fully-connected layer.

It takes question q as input, and generates a real valued

vector, which corresponds to candidate weights for the

dynamic parameter layer.

Both the location network and the answer predic-

tion network act as the action network of our IQA

agent. After executing an action, the agent receives

a new visual observation of the environment at {lt+1}
and a reward signal rt+1.

The goal of the agent is to maximize the sum of the

reward signals R =
∑T

t=1 rt.

3.1.6 Question Representation

The word sequence of a question is encoded by a

recurrent network with GRU cells, as shown in Fig.4.

GRU GRU GRU

word2vec

what is the animal ?

GRU q

Fig.4. Question representation generation network.

Given question q = (w1, ..., wt, ..., wN ), where wi is

the word at position i, we first embed the words to a

vector space through a pre-trained word2vec model[25].

Then we feed the embedded word vectors in sequence to

the GRU. The last hidden state is taken as the question

representation.

3.1.7 Image Representation

Image features are extracted by using a convolu-

tional neural network shown in Fig.5.

convMap fc

Fig.5. Convolutional neural network.

We apply a glimpse sensor on convolutional map-

pings, rather than on raw pixels. Compared with the

original image in high resolution, convolution mapping

has its own advantages. On one side, it reduces the

search range for glimpse locator. On the other side,

higher level preprocessing avoids noisy information and

retains the spatial information of the original image.

The output of the last fully-connected layer retains

the global information of the image, and therefore it is

taken as the contextual feature fc.
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In this paper, we adopt the pre-trained VGG-16 lay-

ers network[26] as our CNN model. The glimpse sensor

is operated on the last convolution layer conv5. Con-

text information is represented by fc7 feature.

3.2 Deep Reinforcement Training for the
Contextually Guided Recurrent Attention
Model

Given an image I and a question q, IQA learning

is often formulated as a classification problem a∗ =

max
a

p (a|I, q; θ) with the cross entropy objective func-

tion. θ represents network parameters.

In our recurrent attention model, the IQA agent

predicts answers conditioned on a series of intermedi-

ate latent location variables l = (l1, ..., lt, ..., lT ) and

corresponding patches. Therefore, we can formulate

the learning process as maximizing the likelihood of an-

swers given images and questions by marginalizing over

the glimpse locations.

log p (a|I, q; θ) = log
∑

l
p (l|I, q; θ) p (a|l, I, q; θ).

The marginalized objective function can be learned

through optimizing its variational lower bound shown

as follows.

log
∑

l
p (l|I, q) p (a|l, I, q)

�
∑

l
p (l|I, q) log p (a|l, I, q). (1)

Ideally, the deep recurrent attention model should

learn to look at locations that are relevant for classify-

ing answers of interest. However, for each glimpse in

the glimpse sequence, it is non-trivial to evaluate the

exponentially many glimpse locations during training.

One of practical policies is to estimate the locations

l by using Monte Carlo samples. Specifically, we as-

sume location lt is defined by a two-component Gaus-

sian distribution with a fixed variance. The variance is

a hyper-parameter, which is set empirically. The out-

put of the location network is taken as the mean l̂t of

the location policy at time t.

l̃mt ∼ p (l|I, q; θ) = N
(
lt; l̂t,Σ

)
,m = 1, ...,M. (2)

The attention agent runs the location policy M

episodes. At the t-th glimpse of the m-th episode, the

location is randomly sampled from the assumed distri-

bution. As a result, the derivatives of the lower bound

in (1) with respect to the model parameters θ are for-

mulated as follows.

∂Ω

∂θ
=

∑
l
p (l|I, q)

(
∂ log p (a|l, I, q)

∂θ
+

log p (a|l, I, q) ∂ log p (l|I, q)
∂θ

)

≈ 1

M

M∑
m=1

⎛⎝∂ log p
(
a|l̃m, I, q

)
∂θ

+

log p
(
a|l̃m, I, q

) ∂ log p
(
l̃m|I, q

)
∂θ

⎞⎠ . (3)

The log-likelihood log p
(
a|l̃m, I, q

)
in the gradient

estimator (3) may introduce substantial high variance

due to its unbounded range. Especially when the sam-

pled location is off from answer-related regions in the

image, the log likelihood will induce an undesired large

gradient update that is back-propagated through the

rest of the model.

To reduce the variance induced from

log p(a|l̃m, I, q), we replace it with a 0/1 discrete indi-

cator function R as in [21].

∂Ω

∂θ
≈ 1

M

M∑
m=1

(∂ log p
(
a|l̃m, I, q

)
∂θ

+

λ (Rm − b)
∂ log p

(
l̃m|I, q

)
∂θ

)
. (4)

Hyper-parameter λ balances the scale of the two

gradient components. Rm =
∑T

t=1 r
m
t is the cumula-

tive reward at the m-th episode. In our problem set-

ting, reward R is sparse and delayed. rT = 1 if the

answer is predicted correctly after T steps, and rT = 0

otherwise. b is a baseline needed to learn during the

recurrently interactions.

It is not difficult to find that the first term in (4) is

a normally gradient for classification problems. When

viewed as a reinforcement learning update, the second

term in (4) is an unbiased estimate of the gradient with

respect to θ of the expected reward R under the model

action policy. Therefore, we have a practical gradient

estimator (4) from (3).

We use a hybrid supervised loss to train the model.

The cross entropy loss is optimized to train the an-

swer prediction network fa. The resulted gradients are

back-propagated through the core recurrent attention

network and glimpse network. The location network fl
is always trained with REINFORCE[27].

During inference, the model behaves as a feed for-

ward network. As suggested in (1), we use samples of
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location sequences l̃m = (l̃m1 , ..., l̃mT ) and average their

answer predictions.

El (log p (a|I, q)) ≈ 1

M

M∑
m=1

log p
(
a|l̃m, I, q

)
,

where El (•) represents expectation.
Therefore, the proposed IQA agent will be evalu-

ated multiple times based on the given question and

image, with the predicted answer being averaged.

4 Experiments

4.1 Datasets

We compare our proposed model on two public

datasets: COCO-QA[1] and MSCOCO-VQA[3].

4.1.1 COCO-QA

The dataset is automatically generated from cap-

tions in the Microsoft COCO dataset. It contains about

78 736 training questions and 38 948 testing questions.

These two kinds of questions are based on 8 000 and

4 000 images respectively. There are four types of ques-

tions including object, number, color, and location.

Each type takes about 70%, 7%, 17%, and 6% of the

whole dataset, respectively. All answers in this dataset

are single words.

4.1.2 MSCOCO-VQA

The dataset contains 248 349 training questions,

121 512 validation questions and 244 302 testing ques-

tions. There are three sub-categories according to

answer-types including yes/no, number, and other.

Similar to [3], we use the top 1 000 most frequent an-

swers as the possible outputs.

This set of answers covers about 86.54% of the

train+val answers. For testing, we train our model

on VQA train+val and report the test-dev and test-

standard results from the VQA evaluation server. The

used evaluation protocol is the same with [3].

Several examples about image question answering

are shown in Fig.6.

4.2 Experimental Settings

We implement our proposed model in the framework

of the deep reinforcement learning as Mnih et al.[21] did

on recurrent attention model.

We firstly resize an image to 448 × 448, and then

input the resized one to a CNN. We take the activation

from the last convolution layer — conv5 of VGG16 Net

as input image convMap I for glimpse network. The

size of the resulted convolution mapping is 28×28 with

512 channels. We take the activation from the last fully-

connected layer fc7 as the global context feature.

(a) (b) (c)

Fig.6. Image question answering examples. (a) Q: What color
is the signal? A: Red. (b) Q: What animal is this? A: Cat. (c)
Q: Are they riding horses both the same color? A: No.

In the glimpse network, given a glimpse location lt,

we extract glimpse patches of two different resolution

scales {x1
t , x

2
t } on I. x1

t is the original patch and x2
t is a

down-sampled coarser image patch. The original patch

size is set to 4× 4. The scale ratio is set to 2. Patches

{x1
t , x

2
t} are max-pooled respectively in space. We use

the concatenation of their pooled features {x̂1
t , x̂

2
t } as

the glimpse observation, resulting a final glimpse obser-

vation vector ρt of 1 024 dimensions.

The glimpse observation vector ρt, the location co-

ordinates lt, and question q pass through a multi-layer

perception network as defined in Fig.2. In this paper,

the dimensionality of g0 and g1 is 512 while the dimen-

sionality of gt is 1 024 for the attention model.

The hidden state size of GRU in recurrent attention

network fh (θh) is empirically set to be d1 = 1 000.

The parameters of GRU for generating a question’s

representation q are initialized with the skip-thought

vector model pre-trained on a book-collection corpus

containing more than 74M sentences[28]. Its hidden

state size is set to be d2 = 2 400. During training,

the parameters will be fine-tuned accordingly.

The other hyper-parameters in our experiments are

the learning rate η and the location variance Σ in (2).

They are determined by cross-validation. Empirically,

in this paper, we set η = 10−4 and Σ = 0.11.

We allow the recurrent attention model taking T =

4 glimpses before making an answer prediction. A gra-

dient clip with the threshold 0.1 is locally adopted on

each module to handle the gradient explosion. The

dropout strategy with 0.5 dropout rate is applied af-

ter each nonlinear layer to prevent over-fitting.

During training, the pre-trained CNN model for im-

ages is kept frozen. All the other parameters including
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the initialized GRU parameters for questions are tuned.

The experiments in this paper are run in Torch using

NVIDIA GTX TitanX. The mini-batch is set to 100.

The optimization used is Adam. The maximum num-

ber of training epoch is set to 60 with an early stop.

The number of episodes M is empirically set to 5.

Some examples on the glimpse locations attended

are shown in Fig.7.

(a) (b) (c) (d) (e)

Fig.7. Illustration of sampled glimpse locations learned from
questions and answers from Fig.6. (a) Input image with glimpse
path overlaid. (b)∼(e) show the respective bounding boxes of
the four glimpses the network chooses.

4.3 Results and Analysis

We compare the proposed method with seve-

ral state-of-the-art methods, including methods us-

ing global feature, like VIS+LSTM[1], LSTM Q+I[3],

DPPnet[16] and iBOWIMG[29], or methods using soft

attention to local regions, such as SAN[6], ABC-CNN[8],

IMG-CNN[20] or methods using region box, such as

FDA[11].

Classification accuracy and WUPS score[30] are

employed to evaluate the performance on COCO-

QA. WUPS uses the Wu-Palmer similarity[31] between

words based on the WordNet[32] taxonomy.

WUPS

=
1

N

N∑
i=1

min

{ ∏
a∈Ai

max
t∈Γi

μ (a, t),
∏
t∈Γi

max
a∈Ai

μ (a, t)

}
,

where Ai denotes the predicted answer set, and Γi de-

notes the ground truth answer set of the i-th example.

μ (a, t) denotes the Wu-Palmer similarity between the

prediction and ground-truth. We use two thresholds

0.9 and 0.0 in our evaluation respectively.

A specifically defined accuracy[3] is employed to re-

flect human consensus on MSCOCO-VQA, as described

in (5). In this criterion, a predicted answer is regarded

to be correct in the condition that at least three anno-

tators agree. If the predicted answer is not correct, its

evaluation score will depend on the number of agree-

ments.

AccV QA =
1

N

N∑
i=1

min

{∑
t∈Γi σ [ai = t]

3
, 1

}
, (5)

where σ [ai = t] denotes an indicator function.

The evaluation results on COCO-QA and

MSCOCO-VQA are shown in Table 1 and Table 2

respectively.

Table 1. Results on COCO-QA (%)

Method Accuracy WUPS

@0.9 @0.0

SAN(1, LSTM)[6] 59.60 69.60 90.10

SAN(2, LSTM)[6] 61.00 71.60 90.90

DPPnet[16] 61.19 70.84 90.61

IMG-CNN[20] 58.40 68.50 89.67

VIS+LSTM[1] 53.31 63.91 88.25

VIS + LSTMFull
[1] 57.84 67.90 89.52

ABC-CNN[8] 58.10 68.44 89.85

HieCoAttVGG
[14] 62.90 72.80 91.30

Our method 62.82 71.55 90.75

Table 2. Results on MSCOCO-VQA Open-Ended Task (%)

Method Test-Dev Test-STD

Y/N Number Other All All

iBOWIMG[29] 76.55 35.03 42.62 55.72 55.89

LSTM Q+I[3] 80.50 36.77 43.08 57.75 58.16

SAN[6] 79.30 36.60 46.10 58.70 58.90

DPPnet[16] 80.71 37.24 41.69 57.22 57.36

DPPnetFIXED
[16] 80.48 37.20 40.90 56.74 -

FDA[11] 81.14 36.16 45.77 59.24 59.54

HieCoAttVGG
[14] 79.60 38.40 49.10 60.50 -

Our method 80.65 38.72 46.64 59.76 59.94

Except iBOWIMG[29] with GoogLeNet[33] and

FDA[11] with ResNet[34], all the other methods use the

pre-trained VGGNet as their CNN model for extract-

ing image features. Generally, features extracted from

ResNet have the strongest discriminative power. VG-

GNet and GoogleNet have similar power, a little weaker

than the ResNet. Despite the fact that a model would

have better performance if using ResNet, in this work,

for fair comparison with most state-of-the-art methods,

we still choose to use the prevalent VGGNet as our pre-

trained CNN model.

From the experimental results, we can observe that

our method similarly achieves the best performance as

HieCoAtt[14], and outperforms all the other compared

methods in most cases.
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In details, it is not difficult to find that the core

dynamic parameters prediction layer in DPPnet[16] is

embedded as a part of our answer prediction network.

If the contextually guided reinforcement attention part

is removed, our model degrades to a similar structure

to DPPnet. Compared with DPPnet, our method im-

proves the performance by 1.7% on COCO-QA and

nearly 2.5% on MSCOCO-VQA. These improvements

are owe to the reinforcement training strategy and the

complementary information of global context on local

regions.

SAN[6] is the newest published method that success-

fully employs soft attentions to solve the IQA problem.

It allows multi-step reasoning on spatial attention. In

contrast, we employ a reinforcement strategy to sequen-

tially attend glimpses. The recurrently incorporated

“hard” attentions focus more purposefully on regions

related to the question’s answers, with the guidance of

global contextual information. The experimental re-

sults also show the effectiveness of our strategy. It

outperforms SAN by 1.8% on COCO-QA and 2% on

MSCOCO-VQA.

Compared with FDA[11] explicitly using region

boxes, our selections of glimpse patches are implicitly

related to the question. Owe to the reinforcement

reward directly designed for answer prediction, the

glimpse network is apt to extract patches at locations

closely related to answer-related regions, not limited

to objects. Further, in FDA, the sequence order of se-

lected regions input into LSTM is determined according

to their corresponding word order in the question. This

practice is a little arbitrary, because there do not exist

straightforward connections between the two modality

data. In contrast, our mechanism is more natural by

embedding the sequence selection in a holistic learning

process. Our method outperforms FDA about 0.5% on

the MSCOCO-VQA open-ended task. Though the im-

provement is marginal, it should be pointed out that the

result of FDA is obtained by using much more discrimi-

native ResNet for visual feature.

The contemporary work HieCoAtt[14] achieves a lit-

tle better performance than ours. However, we should

point out that its contributions are embodied in using

a more complex model to fuse vision and text informa-

tion, rather than attention mechanism, because in its

model the used attention is still as same as traditional

“static” soft one.

The contributions of HieCoAtt and our work are

not in conflict, because we focus on different view-

points. HieCoAtt utilizes much more question infor-

mation, while we pay more efforts on proposing a

new vision attention model. Moreover, we should also

emphasize that our network is less complicated than

HieCoAtt’s, as our model is capable of reducing com-

putation cost by only processing a few selected regions

on high-level convolution mapping. Our model outper-

forms HieCoAtt in speed on condition of achieving simi-

lar performance.

In order to explicitly validate the effectiveness of

the proposed method, we have further done an abla-

tion study on two variants. One removes the global

contextual feature fc from the proposed network, re-

taining its recurrent “hard” attention parts. The other

replaces the recurrent “hard” attention parts with tra-

ditional soft one. As a result, the soft attention based

variant is shown in Fig.8, where the attention layer is

a single layer perception with softmax layer generating

attention distribution over the regions as in (6).

hI = tanh (WIvI ⊕ (WTq + b)) ,

pI = softmax (WphI + bp) .
(6)

We denote by ⊕ the addition of a matrix and a vector.

Parameters’ size of answer prediction network fa (θa) is

the same with the one in our full model.

fa↼θa↽

GRU

CNN
Answer

Attention
Layer

GRU

Feature Vectors of
convMap

GRUGRU

word2vec

what is the animal ?

q

Fig.8. Illustration of the soft attention based variant in ablation
studies.

We evaluate the two variants on the COCO-QA

dataset. The results are shown in Table 3.

Table 3. Ablation Study on COCO-QA

Method Accuracy WUPS

@0.9 @0.0

Recurrent hard attention 61.05 70.88 90.20

Soft attention 60.71 70.82 89.96

Our full model 62.82 71.55 90.75
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From the ablation study, we can observe that, in

the case of our experimental settings, recurrent hard

attention gains better performance than the soft at-

tention variant. Our full model in Fig.1 achieves the

best results, which demonstrates that for answering vi-

sual question, global context and local details indeed

have much potential to possess complementary infor-

mation for different types of answers. Global context

can provide helpful guidance for purposefully focusing

on informative details.

5 Conclusions

In this paper, we proposed a deep reinforcement

learning based multimodal recurrent neural network for

image question answering. It is built upon recurrent

attention model with the idea of “where to look un-

der contextual guidance”. The agent is trained by us-

ing reinforcement learning strategy, so that it can at-

tend local regions more purposefully, and at the same

time avoid global information lost. We compared the

proposed method with several state-of-the-art methods.

The experimental results demonstrated that it achieves

satisfying performance on public IQA dataset, and out-

performs the compared methods in most cases. Cur-

rently, our network is mainly focused on single-word

answers. In the future, we will do research on the cases

of multiple words or open-ended sentences.
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