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Bluetooth Aided Mobile Phone Localization: A Nonlinear Neural
Circuit Approach
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It is meaningful to design a strategy to roughly localize mobile phones without a GPS by exploiting existing
conditions and devices especially in environments without GPS availability (e.g., tunnels, subway stations,
etc.). The availability of Bluetooth devices for most phones and the existence of a number of GPS equipped
phones in a crowd of phone users enable us to design a Bluetooth aided mobile phone localization strategy.
With the position of GPS equipped phones as beacons, and with the Bluetooth connection between neigh-
bor phones as proximity constraints, we formulate the problem into an inequality problem defined on the
Bluetooth network. A recurrent neural network is developed to solve the problem distributively in real time.
The convergence of the neural network and the solution feasibility to the defined problem are both theo-
retically proven. The hardware implementation architecture of the proposed neural network is also given
in this article. As applications, rough localizations of drivers in a tunnel and localization of customers in a
supermarket are explored and simulated. Simulations demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

In the most recent years, with the advent of mobile Internet era, mobile phones have
experienced an explosive development in both hardware and software and have been
witnessing their revolutionary transformation from simple wireless communication
tools to a powerful intelligent mobile platform. A variety of mobile phone based ap-
plications reply on the location information. For example, users can post on Facebook
with a geo-location label. GeoLife envisions the service displaying shopping lists on a
mobile phone when it is detected near a supermarket [Sohn et al. 2005].

One of the most popular technology enabling localization is to embed GPS devices in
the mobile phone. While GPS works well in outdoor environments, it fails indoors, as
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the signal cannot penetrate constructions. This is especially the case, say in a tunnel or
in an underground subway station, where even the communication signal is too weak
to make any phone call, not to mention the GPS signal for localization. On the other
hand, the relatively high cost of a GPS module also limits the popularization of GPS
based localization to low cost mobile phones in current stage. Other alternatives, such
as WiFi [Chen et al. 2006; Cheng et al. 2005] and GSM [Varshavsky et al. 2007] based
localizations, require the predeployment of base stations with a known position and
may therefore limit their applications.

Widely existing in most mobile phones, Bluetooth is originally designed for exchang-
ing data with a low power consumption over short distances (the maximum communi-
cation range for Bluetooth is 100 meters, 10 meters, 5 meters for class 1, class 2, and
class 3 transceivers, respectively.). Like all the other wireless signals, such as WiFi,
GSM, etc., the signal strength at a given distance from the Bluetooth device varies due
to propagation conditions, material coverage, antenna configurations and battery con-
ditions [Tse and Viswanath 2005] and the calculated distance according to the received
signal strength (RSS) often has a large error [Kaemarungsi and Krishnamurthy 2004].
Nevertheless, the nominal maximum range, which is measured under ideal conditions
in open environments without obstacles along the signal propagation route, without
material coverage, with a proper configuration of the antenna and with a full power of
the battery, etc., gives an upper bound of the distance between two connected Bluetooth
devices. Actually, with merely this proximity information and some additional ones, we
are still able to localize the mobile phone with certain accuracy. In fact, a proportion
of existing mobile phone users has the GPS functions with their phone, which may
be utilized as beacons for those Bluetooth equipped but GPS nonexistent phones. In
contrast to existing base station based localization strategy [Hay and Harle 2009; Pei
et al. 2010], which requires a dense deployment of base stations to guarantee that each
mobile phone is at least neighbored by three base stations [Doukhnitch et al. 2008], the
proposed approach in this article thoroughly reduces the number of beacons by itera-
tively using already localized mobile phones as new beacons, as will be demonstrated
in Section 5.

Mobility is an inherent property of the mobile phone network constructed by
Bluetooth communication links, which distinguish the phone network from static net-
works, such as wireless sensor networks (WSNs). For WSNs, there is a similar class of
localization strategy, which is called range-free localization [He et al. 2003]. The strat-
egy in WSNs localizes sensors in a similar way based on the connectivity information
of the network and the positions of beacon sensors. Since WSNs have invariant sensor
positions, a time inefficient algorithm is still acceptable for WSN localization, which
leaves living spaces for some unscalable algorithms [Doherty et al. 2001; Kulaib et al.
2011]. In contrast, a localization algorithm for mobile phones must be time-efficient
relative to the moving speed of the phone. For example, an algorithm with a running
time of one second results in an error more than 20 meters solely because of the mobil-
ity of a mobile phone user riding on a car with a speed of 50 miles/hour. Inspired by the
great success of recurrent neural network on realtime signal processing [Skowronski
and Harris 2007], robotics [Li et al. 2007, 2012], online optimization [Smith 1999], etc.,
we proposed a neural approach in Li et al. to tackle the problem in real time. In this
article, we investigate this neural network approach in more detail both in theory and
in simulation.

The remainder of this article is organized as follows. In Section 2, we formulate the
Bluetooth aided mobile phone localization problem into a mathematic problem and
present a recurrent neural network model to solve it. In Section 3, the convergence of
the neural network is analyzed and it is proven to be convergent to a feasible solution of
the problem. In Section 4, the hardware implementation of the neural network model
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Fig. 1. Connectivity topology of the Bluetooth aided mobile phone localization system.

is explored. In Section 5, two applications are given and simulations are performed to
demonstrate the effectiveness of our method. Section 6 concludes this article.

2. PROBLEM FORMULATION

For the convenience of problem formulation, we first give the following definitions.

Definition 2.1. Beacon phone: the mobile phone with a GPS device.

Definition 2.2. Blind phone: the mobile phone without GPS.

Both beacon phone and blind phone referred in this approach are assumed to be
equipped with Bluetooth devices. Figure 1 sketches the connectivity topology of a phone
network consisting of beacon phones and blind phones. In the network, the positions of
beacon phones are obtained by GPS. Each Bluetooth connection link gives a constraint
to the positions of mobile phones asides the link. In equation, we have

(xi − xj)T (xi − xj) ≤ R2 for i ∈ N( j) (1a)

xk = x̄k for k ∈ B, (1b)

where xi, xj represents the position of the ith and the jth mobile phone, respectively,
R is the maximum communication range of the Bluetooth device, N( j) denotes the
jth mobile phone’s neighbor set, which includes all mobile phones connected to it via
Bluetooth, B is the beacon phone set, x̄k is the GPS measured position of the beacon
phone labeled the kth.

Note that there is no explicit objective function but inequality and equality con-
straints in problem (1). The solution to this problem is generally not unique. Similar to
applications like range-free localization of WSNs [Doherty et al. 2001; He et al. 2003]
and communication connectivity maintenance in robot networks [Reich et al. 2011;
Hsieh et al. 2008], etc., we are more concerned with finding a feasible solution in real
time instead of finding all the feasible solutions. Based on this consideration, we ex-
plore finding a feasible solution to Problem (1) in real time via a recurrent dual neural
network.
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The solution of Problem (1) is identical to the one of the following normal optimization
with an explicit objective function,

minimize
n∑

i=1

∑
j∈N(i)

wi jmax
{
(xi − xj)T (xi − xj) − R2, 0

}

subject to xk = x̄k for k ∈ B, (2)

where n denotes the number of all mobile phones, wi j > 0 is the weight of the con-
nection between the ith and the jth phone. Note that the optimization problem (2) is
non-smooth due to the presence of the function max(·). The partial gradient relative to
xi (partial sub-gradient to be more exactly) of the objective function switches between
4

∑
j∈N(i)(xi − xj) and 0 at the critical point (xi − xj)T (xi − xj) − R2 = 0. For smooth arbi-

tration, we use the the following recurrent neural network, with the switching criteria
augmented negative gradient evolution, to find a feasible solution of the optimization
problem (2),

ẋi = −ε
∑

j∈N(i)

wi j Iij(xi − xj), (3)

where xi is the position estimation of the blind mobile phone labeled i, ε > 0 is a scaling
factor, wi j is a positive weight, Iij is an indicator function defined as follows:

Iij =
{

1 if (xi − xj)T (xi − xj) − R2 > 0

0 if (xi − xj)T (xi − xj) − R2 ≤ 0.
(4)

About the distributiveness of the proposed neural network model (3), we have the
following remark.

Remark 2.3. The recurrent neural network (3) is a distributed one. Communication
only happens between neighbor phones with direct Bluetooth connections. No routing or
cross-hop communication is required for the implementation of the neural network (3).
The distributed nature of the neural network thoroughly reduces the communication
burden and makes the neural network scalable to a network with a large number of
phones involved.

The following remark gives an intuitive interpretation of the working principle of
the proposed neural network (3) for position estimation.

Remark 2.4. The dynamic evolution of xi in the recurrent neural network (3) de-
pends on its neighbor values xj for j ∈ N(i). In detail, the neighbor phone xj has an
action −ε Iij(xi − xj) on xi. This action term is analogous to a force pointing from xi
to xj and pulling xi to xj with an amplitude ε or 0 respectively when ‖xi − xj‖ > R
or ‖xi − xj‖ ≤ R. This mechanism guides position estimations of neighbor phones to
aggregate to within the maximum range R.

3. CONVERGENCE ANALYSIS

In this section, we study the convergence of the neural network (3) and the solution
feasibility to the original problem (1). About this neural network, we have the following
theorem,

THEOREM 3.1. The recurrent neural network (3) with ε > 0, wi j for all possible i and
j, asymptotically converges to a feasible solution x∗

i (for all i in the blind mobile phone
set) of problem (1).
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PROOF. We construct the following Lyapunov function to analyze the dynamic of the
recurrent neural network,

V =
n∑

i=1

∑
k∈N(i)

wik
(
(xi − xk)T (xi − xk) − R2)+

, (5)

where x+ = max{x 0} for a scalar x. The derivative of ((xi − xk)T (xi − xk) − R2)+ is given
by ∂((xi−xk)T (xi−xk)−R2)+

∂xi
= 2Iik(xi − xk) and ∂((xi−xk)T (xi−xk)−R2)+

∂xk
= −2Iik(xi − xk) respectively

with Iik representing the indicator function defined in (4).
The time derivative of V along the neural dynamic (3) is as follows,

V̇ = 2
n∑

i=1

∑
k∈N(i)

(
wi j Iik(xi − xk)T ẋi − wi j Iik(xi − xk)T ẋk

)

= 2
n∑

i=1

⎛
⎝ẋT

i

∑
k∈N(i)

wikIik(xi − xk) − ẋT
k

∑
k∈N(i)

wikIik(xi − xk)

⎞
⎠

= −2ε

n∑
i=1

⎛
⎜⎝

∥∥∥∥∥∥
∑

k∈N(i)

wikIik(xi − xk)

∥∥∥∥∥∥
2

+
∥∥∥∥∥∥

∑
k∈N(i)

wikIik(xi − xk)

∥∥∥∥∥∥
2
⎞
⎟⎠

= −4ε

n∑
i=1

∥∥∥∥∥∥
∑

k∈N(i)

wikIik(xi − xk)

∥∥∥∥∥∥
2

≤ 0, (6)

where ‖ · ‖ represents the Euclidean norm of a vector. Following the procedure of
LaSalle’s Lemma [Khalil 2002], we let V̇ = 0 to find the largest invariant set,

V̇ = 0 ⇒
∑

k∈N(i)

wikIik(xi − xk) = 0 for all i. (7)

The position xi of the mobile phone i is a three dimensional vector in latitude/
longitude/altitude (or simply two dimensional by assuming all positions have the same
altitude). Considering the first dimension of vector x in (7), we have,

xi1

∑
k∈N(i)

wikIik =
∑

k∈N(i)

wikIikxk1 for all i, (8)

where xi1, xk1 represent the first dimension components of the vector xi1 and xk1 respec-
tively. Defining that i∗

1 represents the mobile phone with the largest value of xk1 for all
k and i∗

2 represents the second largest one and generally i∗
m represents the mth largest

one, (8) yields the following for i = i∗
1,

xi∗
11

∑
k∈N(i∗

1)

wi∗
1kIi∗

1k =
∑

k∈N(i∗
1)

wi∗
1kIi∗

1kxk1. (9)

Note that Iik ≥ 0 for all i and k. Equation (9) means xi∗
11, which is the largest one in

{xk1} for all k, can be represented as a weighted average of its neighbor values, that is,

xi∗
11 = ∑

k∈N(i∗
1)

wi∗1kIi∗1k∑
k∈N(i∗1) wi∗1kIi∗1k

xk1, if
∑

k∈N(i∗
1) wi∗

1kIi∗
1k �= 0. In fact, there is only one possibility

that xk1 = xi∗
11 for Ii∗

1k �= 0 in this case and otherwise it contradicts the fact that the
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strictly largest one cannot be expressed as a weighted average of the others. For those k
satisfying xk1 = xi∗

11, xk1 is also the largest and letting k = i∗
1 yields similar conclusions.

Recursively, we will finally conclude that xk1 = xi1 for all i and k, which contradicts
that the beacon phones are in different places. According to the above reasoning, we
only need to consider

∑
k∈N(i∗

1) wi∗
1kIi∗

1k = 0, which leads to Ii∗
1k = 0 for all k ∈ N(i∗

1). Let us
then consider i∗

2, (8) yields the following for i = i∗
2,

xi∗
21

∑
k∈N(i∗

2)

wi∗
2kIi∗

2k =
∑

k∈N(i∗
2)

wi∗
2kIi∗

2kxk1 for all k ∈ N
(
i∗
2

)

Note that k = i∗
1 is excluded as Ii∗

1k = 0 is valid for k = i∗
2 if i∗

1 and i∗
2 are neighbors. With

a similar reasoning as for i = i∗
1, we conclude that Ii∗

2k = 0 for all k ∈ N(i∗
2). Following

this procedure recursively with i∗
3, i∗

4, . . . , we finally get Iik = 0 for all possible i and
k, which means (xi − xj)T (xi − xj) − R2 ≤ 0 for i ∈ N( j) and all j. In other words,
the largest invariant set coincide the solution to problem (1). According to LaSalle’s
Lemma [Khalil 2002], we concludes that the neural network asymptotically converges
to a feasible solution of problem (1). This completes the proof.

4. HARDWARE IMPLEMENTATION OF THE NEURAL NETWORK

The proposed neural network can either be implemented on microprocessors in se-
ries for the update of position estimation by discretizing the dynamic equation (3) or
be implemented in analog circuits in parallel. In this section, we study the parallel
implementation of the proposed model.

In the neural network (3), each blind mobile phone is associated with a dynamic
neuron. We regard such a dynamic neuron as a module, which is a building block of the
neural network. The modules interact with their neighbor modules and all the mod-
ules together perform the localization task and solve the problem (1). Different from
conventional iterative methods, which may only be implementable in series, the pro-
posed neural network can be implemented in analog circuits and accordingly processes
signals in parallel and solve the problem in real time.

Figure 2 sketches the implementation architecture with analog devices of the neural
module associated with the blind mobile phone labeled 1 (i.e., i = 1), where j1, j2, . . . ,
jk denote the neighbor phones (either blind phones or beacon phones). From Figure 2,
we can see that summators, multipliers, linear amplifiers, nonlinear amplifiers (for the
implementation of the indicator function) and integrators are employed in the imple-
mentation. The neural module gets input from modules associated with its neighbor
phones and outputs its own position estimation. Equipped with such a hardware mod-
ule, mobile phones are able to localize themselves with proximity information provided
by the Bluetooth devices.

5. APPLICATIONS

In this section, two applications are considered and simulations are performed to show
the effectiveness of the proposed approach for Bluetooth aided mobile phone localization
in the corresponding applications.

5.1. Mobile Phone Localization in the Zhujiang Tunnel

The Zhujiang Tunnel (as shown in Figure 3) is a highway tunnel under the Pearl River
in Guangzhou, China, with a total length of 1238.5 meters and a traffic of 10,000
vehicles per day on average. In the duration of traveling through the tunnel, drivers
are not able to localize themselves due to the signal coverage by the constructions,
which brings a lot of inconveniences for vehicle localization, especially in emergent
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Fig. 2. Analog circuit architecture of a module in the proposed neural network.

Fig. 3. The Zhujiang Tunnel under the Pearl River in Guangzhou, China.

situations, such as car accident. We use the Bluetooth aided mobile phone localization
strategy to provide an option for rough localization of vehicles.

In the tunnel, there are three lanes for each direction and each lane has a width
of 3.5 meters (as shown in Figure 4). We simplify the problem into a one dimensional
problem as the width of the lane is much less than that of the communication radius
(100 meters) as sketched in Figure 4. Note that the communication network is relatively
stable for the phones on different vehicles in motion because the relative speed of the
vehicles along the stream is very small even though each vehicle in motion has a
high speed. It is the relative speed instead of the absolute one essentially influences
the stability of the communication connections. In the real tunnel environment, there
are several restrictions to the vehicle stream, such as no overtaking allowed, vehicles
moving in similar speeds to maintain a constant intervehicle distance, etc. Due to
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Fig. 4. The sketch of the Bluetooth aided localization in a tunnel.

these restrictions, the communication network is relatively stable and there is not that
many switching on and off of connections, which may possibly introduce long connection
latency.

We perform simulation experiment to validate the effectiveness of the proposed strat-
egy for this particular application. Suppose there are 23 vehicles (the amount of vehicles
is consistent with a rough estimation based on the length of the tunnel, the total traffic
per day and an average speed of 60km/h for vehicles in the tunnel.) at certain time and
they locate randomly along the tunnel, which is simplified to be a straight line (this
is consistent with the observation from Figure 3). Mobile phones with GPS embedded
inside cannot perform the self-localization task inside the tunnel, so we assume the
phones inside the tunnel are all blind phones while the phones at the two ends of
tunnel are possibly beacon phones. Particularly, we assume there are only two beacon
phones, each of which locates at an end of the tunnel. The Bluetooth devices work in
Class 3 transceiver mode with a maximum range of 100 meters. As we treat the tunnel
as a straight line, the problem in nature is a one dimensional localization problem.
For simulation convenience, we set the coordinates of the two beacon phones at 0 and
1238.5 meters, respectively. The values of xi for all i is randomly initialized.

In the simulation, the neural network parameters ε = 105 and wi j = 1 for all
possible i and j. A typical simulation result is shown in Figure 5. Since position es-
timations are randomly initialized, the initial estimation errors are very large. After
running the simulation for 2×10−4 seconds, the neural network outputs an estimation,
which is much closer to the true positions. The transient of position estimations is
shown in Figure 6. To check the feasibility of the solution to problem (1), we use∑n

i=1
∑

j∈N(i) wi jmax{(xi − xj)T (xi − xj) − R2, 0} to evaluate the performance. As shown
in Figure 7, the value drops sharply with time and decays to zero at about 1.2 × 10−4
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Fig. 5. Position estimation results in the tunnel localization application. In the figure, the lines connect the
associated true phone positions, initially estimated positions and the finally estimated positions.

Fig. 6. Transient of the position estimation in the tunnel localization application.

seconds, which validates the effectiveness of the proposed method for solving prob-
lem (1) in real time in a tunnel environment.

5.2. Bluetooth Aided Localization in Supermarkets

Many supermarkets, such as Walmart, Bestbuy, etc., occupy a large area on a whole
floor, and it is easy to get lost for customers shopping inside. This application aims to
provide an option for indoor rough localizations in such a scenario without introducing
extra devices.

In the simulation, the whole floor of the supermarket is assumed to be a 60×60 square
meters area, and 121 customers with blind phones distribute in this area randomly
and 9 beacon phones are deployed along the perimeter and at the center, with rela-
tive coordinates [0, 0], [30, 0], [60, 0], [60, 30], [60, 60], [30, 60], [0, 60], [0, 30], [30, 30]
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Fig. 7. The time evolution of
∑n

i=1
∑

j∈N(i) wi jmax{(xi − xj )T (xi − xj ) − R2, 0} in the tunnel localization
application.

Fig. 8. True positions of phones in the Bluetooth network and the Bluetooth connection topology in the
supermarket localization application.
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Fig. 9. Position estimation results in the supermarket localization application.

Fig. 10. Transient of the position estimation in x-direction in the supermarket localization application.
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Fig. 11. Transient of the position estimation in y-direction in the supermarket localization application.

Fig. 12. Time evolution of
∑

i
∑

j max{(xi −xj )T (xi −xj )− R2, 0} in the supermarket localization application.

respectively, as shown in Figure 8. The Bluetooth devices work in class 2 mode and
have an maximum range of R = 10 meters. The scaling factor ε = 105 and the connec-
tion weight wi j equals 5 for connections with a beacon phones and 1 otherwise for the
neural network. Figure 9 shows the estimated positions of blind phones by running
the neural network for 5 × 10−5 seconds. The transient of estimated positions in x and
y directions are plotted in Figure 10 and Figure 11, respectively. Figure 12 shows the
evolution of

∑
i
∑

j max{(xi − xj)T (xi − xj) − R2, 0} with time, which is an quantitive
evaluation of the feasibility of the solution to the mobile phone localization problem
(1). The value starts from 1365.7 and drops to 0 at the end of the simulation, which
demonstrates the effectiveness of the proposed approach.
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Table I.
Comparisons of the AB method and our method on the performances under different parameter setups.

Parameters Performances
AB method

vs.
our method

No. of
beacons

No. of
blind

phones E1 E2

Localization
rate

PC
time

(seconds)

Theoretical
time

(seconds)
AB method 9 110 * * 0% * *
Our method 9 110 0.0019 10.3812 100% 2.1513 5×10−5

AB method 9 130 * * 0% * *
Our method 9 130 0.0021 10.3123 100% 2.9175 5×10−5

AB method 9 150 * * 0% * *
Our method 9 150 0.0027 9.7518 100% 3.8103 5×10−5

AB method 9 170 * * 0% * *
Our method 9 170 0.0034 8.4437 100% 5.3992 5×10−5

AB method 16 110 * * 0% * *
Our method 16 110 0.0023 7.5081 100% 2.3054 5×10−5

AB method 16 130 * * 0% * *
Our method 16 130 0.0031 6.6802 100% 3.1723 5×10−5

AB method 16 150 * * 0% * *
Our method 16 150 0.0026 6.4727 100% 4.2393 5×10−5

AB method 16 170 * * 0% * *
Our method 16 170 0.0029 5.8742 100% 5.3992 5×10−5

AB method 25 110 * * 0% * *
Our method 25 110 0.0019 5.5040 100% 2.7278 5×10−5

AB method 25 130 * * 0% * *
Our method 25 130 0.0029 5.4326 100% 3.9657 5×10−5

AB method 25 150 * * 0% * *
Our method 25 150 0.0027 5.3977 100% 5.2791 5×10−5

AB method 25 170 * * 0% * *
Our method 25 170 0.0021 5.3054 100% 8.0778 5×10−5

AB method 36 110 * * 17.27% * *
Our method 36 110 0.0022 4.7553 100% 3.4620 5×10−5

AB method 36 130 * * 20.00% * *
Our method 36 130 0.0031 4.3626 100% 4.1029 5×10−5

AB method 36 150 * * 24.12% * *
Our method 36 150 0.0024 4.3245 100% 5.7575 5×10−5

AB method 36 170 * * 24.67% * *
Our method 36 170 0.0029 4.0440 100% 8.0111 5×10−5

Table I shows the comparisons of the AB method (anchor-based Bluetooth localization
method) [Raghavan et al. 2010; Feldmann et al. 2003; Keiser et al. 2006] and our
method on the performances under different parameter setups. Based on the value
of RSS, The AB method uses trilateration to estimate the location of a Bluetooth
device with connections to at least three beacon phones. To compare the AB method
with the proposed strategy, we consider the cases with different number of beacon
phones and different number of blind phones. The simulation is performed with the
programming language Matlab 7.8 on a laptop with the Intel (R) Core(TM) 2 Duo
CPU at 1.80 GHz and 2GB of RAM. Note that the simulation program performs the
localization algorithms for all the beacon phones and all the blind phones. In real
application, the localization algorithm will be run in a distributed manner separately
by all phones. In the simulation, the beacon phones are deployed uniformly in the area
and the results are averaged based on the data collected in 50 Monte Carlo runs with
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random initializations. In the table, ‘*’ means the performance index is meaningless
as in the simulated scenario, the AB method fails and most blind phones cannot be
localized by using the AB method with such a limited number of beacon phones. We
use the localization rate, which is defined as the ratio between the localized blind
phones and the total number of all blind phones, as a measure of the performance.
As observed in the table, the localization rate of the AB method is 0% for the cases
with beacon phones less than or equal to 25. Even for the case with 36 beacon phones
and 170 blind phones, the localization rate is only 24.67%, which means about 75%
blind phones cannot be localized by the AB method. In contrast, for all the simulated
cases, the localization rate of our method is always 100%, meaning that all blind
phones can be localized by our method. This result demonstrates the advantage of our
method in environments with sparse deployment of beacons. The underlying reason
can be intuitively explained, as the AB method fails to localize a blind phone, say
phone A, if there are fewer than three beacon phones connected to it, no matter how
many blind phones connected to the blind phone A. Differently, our method still works
well in such a scenario. It is worth noting that the theoretical running time of the
proposed algorithm is much less than the PC time (the CPU time in the simulation).
This is because, on one hand, the simulation program simulates all phones on a single
computer while the algorithm is expected to run separately on all phones in parallel in
real application and on the other hand the neural network implementation in analog
circuits can complete the computation when the neural evolution converges. As to
the software implementation of the neural network model, the running time can be
estimated by the ratio between the PC time listed in the table and the total number of
phones simulated, whose value is still acceptable for real-time processing. Moreover,
the localization error E1, defined as E1 = ∑n

i=1
∑

j∈Ni
max{(xi − xj)T (xi − xj) − R2, 0}

with xi denoting the estimated position of the ith phone, and the localization error E2,

defined as E2 =
√∑n

i=1 (xi − xri)
T (xi − xri)/n with xri denoting the real position of the

ith blind phone, are both shown in Table I, from which we can see that E1 is very close
to zero for our method in all cases as E1 = 0 is identical to the expression (1) and
E2 decreases with the increase of the number of beacons and also decreases with the
increase of the number of blind phones.

6. CONCLUSIONS

In this article, we proposed a recurrent neural network based method for Bluetooth
aided mobile phone rough localization. The problem is abstracted to solve a set of
inequalities defined on a Bluetooth connection network and a recurrent neural network
is proposed to solve the problem in real time. The convergence of the proposed neural
network and the feasibility of the neural solution are proven in theory. The architecture
of the circuit implementation of the neural network is given. Finally, applications of the
method to localization of drivers in a tunnel and customer localization in a supermarket
are explored and simulated. Simulations demonstrate effectiveness of the method.
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