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Selective Positive–Negative Feedback Produces the
Winner-Take-All Competition in Recurrent

Neural Networks
Shuai Li, Bo Liu, and Yangming Li

Abstract— The winner-take-all (WTA) competition is widely
observed in both inanimate and biological media and society.
Many mathematical models are proposed to describe the phe-
nomena discovered in different fields. These models are capable
of demonstrating the WTA competition. However, they are often
very complicated due to the compromise with experimental
realities in the particular fields; it is often difficult to explain the
underlying mechanism of such a competition from the perspective
of feedback based on those sophisticate models. In this paper, we
make steps in that direction and present a simple model, which
produces the WTA competition by taking advantage of selective
positive–negative feedback through the interaction of neurons
via p-norm. Compared to existing models, this model has an
explicit explanation of the competition mechanism. The ultimate
convergence behavior of this model is proven analytically. The
convergence rate is discussed and simulations are conducted in
both static and dynamic competition scenarios. Both theoretical
and numerical results validate the effectiveness of the dynamic
equation in describing the nonlinear phenomena of WTA com-
petition.

Index Terms— Competition, nonlinear, recurrent neural
networks, selective positive–negative feedback, winner-take-all
(WTA).

I. INTRODUCTION

W INNER-TAKE-ALL (WTA) refers to the phenomenon
in which agents in a group compete with each other for

activation and only the one with the highest input stays active
while all the others get deactivated. It widely exists in nature
and society: for most plants, the main central stem, which
only appears slightly stronger than the other (side) stems at
the very beginning of the plant development, grows more and
more strongly and eventually dominates over the others [1].
It has been observed in society that, once a firm gets ahead, it
is more likely to become better and better over time while the
others will fall further behind [2]. Neuroscientists find that
the contrast gain in the visual systems comes from a WTA
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competition among overlapping neurons [3]. Other examples
of the WTA competition include decision making in the cortex
[4], [5], animal behaviors [6], cell fate competition [7], [8], etc.

There are various mathematical models presented to
describe the WTA competition phenomena. The N species
Lotka–Volterra model is often used to model the competi-
tive interaction between species. Under elaborately selected
parameters, the N species Lotka–Volterra model is able to
demonstrate the WTA competition. This model is applied
in [9] and [10] to generate the WTA competition. In the
field of computational neuroscience, the FitzHugh–Nagumo
model is often used to describe the dynamic interaction of
neurons. In some situations, the neurons interact with each
other in a WTA manner and the winner spikes. Inspired by
this fact, this describing model is in turn applied to generate
the WTA behavior [11]–[13]. In [11], the authors show that
the model outputs oscillate under a set of parameter setups,
and the oscillatory amplitude of the winner is greater than
the spiking threshold while the amplitude of the losers are
much less than the threshold. In [13], theoretical analysis on
the stability and convergence of a large-scale WTA network is
conducted by using nonlinear contraction theory. In addition,
the authors show that the proposed network is stable for
a range of parameters. In [14]–[17], the WTA problem is
solved by modeling it as an optimization problem. In [14],
a combinatorial optimization solver is proposed to solve the
problem. In [15], the problem is modeled as a convex quadratic
programming problem and a recurrent neural network devel-
oped for solving constrained quadratic programming is applied
to solve it. Following the same problem formulation, the neural
network proposed in [15] is simplified in [16] by tailoring the
structure and taking advantage of the nonlinearity provided
by a saturation function used in the model. In [17], a one-
layer recurrent neural network is developed to solve the WTA
competition by modeling the problem as a constrained lin-
ear programming. Although the optimization-based approach
solves the problem accurately, operations such as saturation
function, matrix multiplication of the state vector, etc. are often
necessary in the iterations to approach the desired solution
and thus are often computationally intensive. In addition, the
resulting dynamics is often complicated and are often difficult
to explain the WTA mechanism from its dynamic equations.

Although many models have been proposed to explain and
generate the WTA behavior [9]–[21], these models are often
very complicated due to the compromise with experimental
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realities in the particular fields. Consequently, the essence of
the WTA competition may be embedded in the interaction
dynamics of those models, but difficult to tell from the sophis-
ticated dynamic equations. Motivated by this, we develop
a simple neural network model to solve the problem. The
proposed model has a star communication topology between
neurons and is scalable to situations with a large number of
competitors. The model is described by an ordinary equation
with the space dimension equal to the number of competitors.
In addition, compared with the model using the Euclidean
norm for global information exchange, the proposed model
extends the results to the more general p-norm cases. More-
over, the proposed model demonstrates different robustness
and convergence speed for different choice of parameters and
thus allows the user to choose a set of parameters for better
performance in applications.

The remainder of this paper is organized as follows. In
Section II, preliminaries on p-norm and system stability
are provided. In Section III, the analytical model is pre-
sented and the underlying competition mechanism is explained
from a selective positive–negative feedback perspective.
In Section IV, the convergence results are proved in theory.
In Section V, a phenomenon relevant to the one-sided com-
petition versus the closely matched competition is discussed
and explained by using the proposed model. In Section VI,
simulation examples are given to show the effectiveness of
the proposed model. This paper is concluded in Section VII.

II. PRELIMINARIES

In this section, we present some useful preliminaries for
p-norm and system stability. We first present preliminaries on
p-norm.

For an n-dimensional vector x = [x1, x2, . . . , xn]T with
xi ∈ R for i = 1, 2, . . . , n, its p-norm, denoted as ‖x‖p , is
defined as follows:

‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)
1
p (1)

where p > 0.
For ‖x‖p , the following partial derivative results hold:

∂‖x‖p
p

∂xi
= ∂(|x1|p + |x2|p + · · · + |xn|p)

∂xi

= ∂|xi |p

∂xi

= ∂|xi |p

∂xi

= p|xi |p−1sgn(xi ) (2)

where sgn(·) is the sign function defined as

sgn(u) =

⎧
⎪⎨

⎪⎩

1, if u > 0

0, if u = 0

−1, if u < 0

(3)

with u ∈ R.
Based on the partial derivative of ‖x‖p shown in (2), the

gradient of (1/p)‖x‖p
p can be obtained as

∇ 1

p
‖x‖p

p = sigp−1(x) (4)

for p > 0 with the operator “sigk(·)” defined as

sigk(x) = [|x1|ksgn(x1), |x2|ksgn(x2), . . . , |xn|ksgn(xn)]T

(5)
where x = [x1, x2, . . . , xn]T . According to this definition, we
can directly obtain

x T sigk(x) = ‖x‖k+1
k+1. (6)

The following inequalities hold for the estimation of p-norms
for different p values:

‖x‖p ≤ ‖x‖r ≤ n
1
r − 1

p ‖x‖p (7)

where p > r > 0, and n represents the dimension of the
vector x .

The following results will be used later as tools for conver-
gence analysis.

Definition 1 ([22]): A continuous function α : [0, a) →
[0,∞) is said to belong to class K if it is strictly increasing
and α(0) = 0. It is said to belong to class K∞ if a = ∞ and
α(r) → ∞ as r → ∞.

Lemma 1 ([22]): Let D ⊂ R
n be a domain that contains the

origin, and V : [0,∞)×D → R be a continuous differentiable
function such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (8)

V̇ = ∂V

∂ t
+ ∂V

∂x
f (t, x) ≤ −W (x) ∀‖x‖ ≥ μ > 0 (9)

∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are class K functions and
W (x) is a continuous positive definite function. Take r > 0
such that Br ⊂ D and suppose that μ < α−1

2 (α1(r)). Then, for
every initial state x(t0), satisfying ‖x(t0)‖ ≤ α−1

2 (α1(r)), there
is T ≥ 0 (dependent on x(t0) and μ) such that the solution of
ẋ = f (t, x) satisfies

‖x(t)‖ ≤ α−1
1 (α2(μ)) ∀t ≥ t0 + T . (10)

Moreover, if D = R
n and α1 belongs to class K∞, then the

result (15) holds for any initial state x(t0), with no restriction
on how large μ is.

The following Lemma is also useful for the analysis of the
ultimate behavior of a dynamic system.

Lemma 2 ([23]): Let � ⊂ D be a compact set that is
positively invariant with respect to ẋ = f (x). Let V : D → R

be a C1-function such that V̇ (x) ≤ 0 on �. Let E be the
set of all points in � such that V̇ (x) = 0. Let M be the
largest invariant set in E. Then, every solution starting in �
approaches M as t → ∞.

The mapping V in Lemma 2 is not necessary to be positive
definite, which is a major difference from the Lyapunov
function in conventional stability analysis of dynamic systems
[23]. Instead, V is required to be a continuous differentiable
function in Lemma 2, which is much looser than the require-
ment of positive definiteness.

III. WTA NEURAL NETWORK

A. Neural Network-Based WTA Problem

In this paper, we are concerned with a neural network-
based approach to find the winner in a group of competitors.
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Fig. 1. Input–output block diagram of the proposed model.

Concretely, we want to find i∗ = argmax{u1, u2, . . . , un} for
the input vector u = [u1, u2, . . . , un]T ∈ R

n with ui ∈ R

by using neural networks, i.e., to find the winner among
u1, u2, . . . , un by neural networks.

B. Neurodynamics

Inspired by the normalized recurrent neural network [24]
and the use of the general norm on modeling the power of
signals [25], we propose a recurrent neural network with a
general p-norm as the regulation term for the WTA competi-
tion. The proposed model has the following dynamic for the
i th neuron in a group of totally n neurons:

ẋi = c0(ui − c1‖x‖p+1
p+1)|xi |psgn(xi ) (11)

where xi ∈ R denotes the state of the i neuron, ui ∈ R is the
input and ui ≥ 0, ui �= u j for i �= j , p ∈ R, p ≥ 0, ‖x‖p+1
is the (p + 1)-norm of the state vector x = [x1, x2, . . . , xn]T ,
c0 ∈ R, and c0 > 0 and c1 ∈ R, c1 > 0 are both constant.

The dynamic (11) can be written into the following compact
form by stacking up the state for all neurons:

ẋ = c0
(
u ◦ sigp(x) − c1‖x‖p+1

p+1sigp(x)
)

(12)

where x = [x1, x2, . . . , xn]T , u = [u1, u2, . . . , un]T , the
operator “◦” represents the multiplication component-wise,
i.e., u ◦ x = [u1x1, u2x2, . . . , unxn]T .

Remark 1: As shown in Fig. 1, the proposed neural net-
work can be regarded as a black box. The i th neuron in
the network receives input ui and outputs xi through the
dynamic interactions with other neurons. As will be proved in
Section IV, with the proposed model (11), the winner neuron
i∗ = argmax{u1, u2, . . . , un} can be identified by checking
whether limt→∞ xi (t) = 0 (if limt→∞ xi (t) �= 0, i = i∗ and
otherwise, i �= i∗).

Remark 2: The neurodynamics described by (11) is con-
nected in a star topology (see Fig. 2). As can be observed
from (11), the i th neuron is only connected to the central node,
which computes the p-norm of the whole network state values.

Fig. 2. Star topology diagram of the proposed model.
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Fig. 3. Level set for ‖x‖p = 1 in 2-D space with different value of p.

The information exchange between neurons comes indirectly
from their direct interaction with the central node.

Remark 3: Choosing the Euclidean norm, which corre-
sponds to the special case of (11) by choosing p = 1, the
proposed model reduces to the following in vector form:

ẋ = c0(u ◦ x − c1‖x‖2x) (13)

where ‖ · ‖ represents the Euclidean norm. In other words, the
proposed model is a generalization from (13), which uses the
Euclidean norm to the general p-norm scheme. Note that this
generalization is not trivial as the p-norm function y = ‖x‖p

corresponds to different level sets (see Fig. 3) and thus leads
to completely different dynamic evolution of x in (11).

Remark 4: Particularly for p = 0, the proposed model (11)
reduces to the following in vector form

ẋ = c0
(
u ◦ sgn(x) − c1‖x‖1sgn(x)

)
(14)

where sgn(x) = [sgn(x1), sgn(x1), . . . , sgn(xn)]T for x =
[x1, x2, . . . , xn]T with sgn(·) being the sign for scalar entries.
Note that this is a typical recurrent neural network with hard-
limiting activation function and is often able to demonstrate a
finite-time convergence as shown in [26] and [27]. In addition,
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it is noteworthy that the global information term ‖x‖p
p reduces

to ‖x‖1 in (14), which is the norm widely used in machine
learning for data sparsification due to its ability to approximate
the cardinality ‖x‖0 [28]–[30]. It will be an interesting topic
to investigate the protocol from the perspective of sparse
optimization.

IV. CONVERGENCE RESULTS

In this section, theoretical results on the dynamic system
(11) are presented. The rigorous proof of the main results
needs the uses of LaSalle’s invariant set principle [23],
[31], local stability analysis, and the ultimate boundedness
theory [22].

With Lemma 1, we are able to prove the following lemma
for our main result.

Lemma 3: There exists T ≥ 0 (dependent on x(t0) and μ)
such that the solution of the neuron dynamic (12) satisfies

‖x(t)‖ ≤ μ ∀t ≥ t0 + T (15)

where μ = μ0(umax + μ1/c1)
(1/p+1) with μ1 > 0 being any

positive constant, μ0 = max{n(1/2)−(1/p+1), 1}, and umax =
max{u1, u2, . . . , un}.

Proof: We prove the result by following the framework of
Lemma 1. Let D = R

n , V = 1
2 x T x and α1(‖x‖) = α2(‖x‖) =

1
2‖x‖2 = V . For V , we have

V̇ = xT ẋ

= c0x T (
u ◦ sigp(x) − c1‖x‖p+1

p+1sigp(x)
)

= c0x T (
diag(u)sigp(x) − c1‖x‖p+1

p+1sigp(x)
)

≤ c0(umax − c1‖x‖p+1
p+1)x T sigp(x)

= c0(umax − c1‖x‖p+1
p+1)‖x‖p+1

p+1. (16)

Note that diag(u) is a diagonal matrix and its largest eigen-
value is umax, from which the last inequality in (16) is
obtained. According to the inequalities given in (7), we have

‖x‖ ≤
{

n( 1
2 − 1

p+1 )‖x‖p+1, for p > 1

‖x‖p+1, for p ≤ 1

where n represents the dimension of x . Inequality (17) is
equivalent to

‖x‖ ≤ μ0‖x‖p+1 (17)

where μ0 = max{n(1/2)−(1/p+1), 1}. Together with (16), we
have,

V̇ ≤ c0

(

umax − c1

(‖x‖
μ0

)p+1
)

‖x‖p+1
p+1. (18)

With this result, it is sufficient for
(
umax − c1(‖x‖/μ0)

p+1
) ≤

−μ1 ≤ 0, i.e., ‖x‖ ≥ μ0((umax + μ1)/(c1))
1/p+1, to guaran-

tee the following inequality:
V̇ ≤ −c0μ1‖x‖p+1

p+1 (19)

with μ1 > 0. These results fall into the framework of
Lemma 1 by choosing μ = μ0((umax + μ1)/(c1))

1/p+1 and

W (x) = c0μ1‖x‖p+1
p+1 in (9). Therefore, we conclude, accord-

ing to Lemma 1, that

‖x‖ ≤ α−1
1 (α2(μ)) = μ = μ0

(
umax + μ1

c1

) 1
p+1 ∀t > t0 +T

(20)
for any initialization of x . This completes the proof.

This lemma reveals the state of the dynamic model (12) is
ultimately bounded inside a compact super ball in R

n with
radius μ. In other words, this super ball is positively invariant
with respect the system dynamic (12). With this result on
hand, we can confine our analysis in this super ball for further
investigation of the system behaviors by applying LaSalle’s
invariant set principle.

Theorem 1: The solution of the system involving n dynamic
neurons with the i th neuron described by (11) globally
approaches 0 for i �= i∗ and approaches (ui∗/c1)

1/p+1ei∗
(or −(ui∗/c1)

1/p+1ei∗ ) for i = i∗ as t → ∞, provided any
initialization with the initial value of the i∗ neuron positive
(or negative), where i∗ denotes the label of the winner, i.e.,
i∗ = argmax{u1, u2, . . . , un}.

Proof: There are three steps for the proof. The first step
is to prove that the state variable ultimately converges to a set
consisting of a limit number of points, the second step proves
there are only two single points among the candidates that are
stable, and the third step gives the initial conditions to decide
which stable equilibrium point the system will converge to.

Step 1: According to Lemma 3, the state variable x in the
system dynamic (12) is ultimately bounded by a compact super
ball in R

n with radius μ implying this super ball is positively
invariant with respect the system dynamic (12) and the super
ball {x ∈ R

n|‖x‖ ≤ μ} is qualified to be the set � in Lemma 2.
Let V = V1 + V2, with

V1 = − 1

p + 1

n∑

i=1

ui |xi |p+1 (21)

V2 = c1

2(p + 1)
‖x‖2p+2

p+1 . (22)

Apparently, V is a C1-function. For V1, we have

V̇1 = −
n∑

i=1

ui |xi |psgn(xi )ẋi

= −(
sigp(x)

)T diag(u)ẋ . (23)

For V2, we have

V̇2 = c1

2(p + 1)

d(‖x‖p+1
p+1)

2

dt

= c1

(p + 1)
‖x‖p+1

p+1

d(‖x‖p+1
p+1)

dt

= c1

(p + 1)
‖x‖p+1

p+1(∇‖x‖p+1
p+1)

T ẋ

= c1

(p + 1)
‖x‖p+1

p+1(p + 1)
(
sigp(x)

)T
ẋ

= c1‖x‖p+1
p+1

(
sigp(x)

)T
ẋ . (24)
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Accordingly

V̇ = V̇1 + V̇2

= −
(
(
sigp(x)

)T diag(u) − c1‖x‖p+1
p+1

(
sigp(x)

)T
)

ẋ

= −c0
∥
∥u ◦ sigp(x) − c1‖x‖p+1

p+1sigp(x)
∥
∥2

≤ 0. (25)

According to the expression of V̇ obtained in (25), we find
diag(u)sigp(x) = c1‖x‖p+1

p+1sigp(x) by letting V̇ = 0. Note

that diag(u)sigp(x) = c1‖x‖p+1
p+1sigp(x) is an eigenvector

equation relative to the matrix diag(u) and the vector sigp(x).
Note that the eigenvalue and eigenvector pairs of the diagonal
matrix diag(u) are ui and kei for i = 1, 2, . . . , n, with k ∈ R

a scaling constant and ei denoting an n-dimensional vector
with the i th component 1 and all the other components 0.
Therefore, the solution for diag(u)sigp(x) = c1‖x‖p+1

p+1sigp(x)

is the solution of the two equations c1‖x‖p+1
p+1 = ui and

sigp(x) = kei for i = 1, 2, . . . , n (i.e., xe = ±(ui/c1)
1/p+1ei

by solving the two equations) and the trivial solution xe = 0.

Define the set M = {0,±( ui
c1

)
1

p+1 ei for i = 1, 2, . . . , n}.
According to Lemma 2, every solution starting in � =
{x ∈ R

n|‖x‖ ≤ μ} approaches M as t → ∞. Together
with the fact proven in Lemma 3 that every solution stays
in � ultimately, we conclude that every solution with any
initialization approaches M as t → ∞.

Step 2: The first step in this proof shows there are several
candidate fixed points to stay for the dynamic system. In
this step, we show that all those fixed points in M are
unstable except for the one corresponding to the winner, i.e.,
x = ±(uk∗/c1)

1/p+1ek∗ , where k∗ = argmax{u1, u2, . . . , un}.
To show the instability of some equilibrium points, we only
need to show that there exists a streamline starting from that
equilibrium point to elsewhere, which is equivalent to the fact
that there exists a streamline from a nonequilibrium point to
the equilibrium point for the new dynamic system with time t
replaced by −t (note that for an autonomous system, replacing
t with −t means that the initial state of the original system is
identical to the ultimate state of the new system). Following
this idea, we consider the following auxiliary system with
reversed time direction:

ẋi = −c0(ui − c1‖x‖p+1
p+1)|xi |psgn(xi ) (26)

and we need to show that there exists a state x0, the streamline
of (26) starting from which ends up at the equilibrium
point xe.

For xe = 0, we choose x0 = ke1, where k > 0 is a small
positive constant and e1 denotes an n-dimensional vector with
the first component 1 and all the other components 0. Clearly,
x j for j = 2, 3, . . . , n starting from x0 = ke1 for the auxiliary
system (26) stays at x j = 0 in values since ẋ j = 0 for them,
while ẋ1 = −c0(u1 − c1‖x‖p+1

p+1)|x1|psgn(x1) < 0 for x1 > 0
and small enough k, which means x1 keeps reducing to zero.
Therefore, we conclude that xe = 0 is unstable.

For xe = (ui/c1)
1/p+1ei with i �= i∗ (i∗ denotes the

winner neuron), we choose x0 = xe + kei∗ with k > 0
being a constant to test the convergence. For j �= i∗,

the value of x j of the auxiliary system (26) starting from
x0 = xe + kei∗ stays at x j = xej in values since
u j |x j |psgn(x j ) = ‖x‖p+1

p+1|x j |psgn(x j ) (i.e., ẋ j = 0). For j =
i∗, ẋi∗ = −c0(ui∗ − c1‖xe + kei∗‖p+1

p+1)|k|psgn(k) at x j = k.

Note that xe = (ui/c1)
1/p+1ei implies c1‖xe + kei∗‖p+1

p+1 =
ui < ui∗ . In addition, ‖xe + kei∗‖p+1

p+1 ≈ ‖xe‖p+1
p+1 for small

enough k > 0. Accordingly, ẋi∗ < 0 for small enough k > 0.
Therefore, we conclude that xe = (ui/c1)

1/p+1ei is unstable.
It is worth noting that for i = i∗, x0 = xe + kei . Note

that xe + kei = (
(ui/c1)

1/p+1 + 1
)
ei and ‖xe + kei‖p+1

p+1 =
(
(ui/c1)

1/p+1 + 1
)p+1

>
(
(ui/c1)

1/p+1
)p+1 = ‖xe‖p+1

p+1 for
any k > 0. Also, computing p + 1 norm on both sides of
xe = (ui/c1)

1/p+1ei generates ui = c1‖xe‖p+1
p+1. Together with

‖xe + kei‖p+1
p+1 > ‖xe‖p+1

p+1, we get ui − c1‖xe + kei‖p+1
p+1 < 0

for k > 0. Also, note that xei dominates over k for small
enough k > 0 in sgn(xei + k) and |xei + k|; we thus conclude
ẋi = −c0(ui − c1‖xe + kei‖p+1

p+1)|xei + k|psgn(xei + k) > 0
for small enough positive constant k (recall xei > 0), which
is different from the cases with i �= i∗.

The instability of xe = −(ui/c1)
1/p+1ei with i �= i∗

(i∗ denotes the winner neuron) can be similarly proved and
thus omitted.

Step 3: Actually, we can conclude that the steady-state value
is (ui∗/c1)

1/p+1ei∗ if the initial state of the winner is positive,
while it is −(ui∗/c1)

1/p+1ei∗ if the initial value is negative by
noting that ẋi∗ = 0 when xi∗ = 0 in (11) for i = i∗, which
means the state value xi∗ will never cross the critical value
x∗

i = 0.
In summary, we conclude that every solution approaches

xe = (ui∗/c1)
1/p+1ei∗ (or xe = −(ui∗/c1)

1/p+1ei∗ ) ultimately,
provided any initialization with the initial value of the i∗ neu-
ron positive (or negative), where i∗ = argmax{u1, u2, . . . , un}
and ei∗ being an n-dimensional vector with the i∗th component
1 and all the other components 0. Entrywise, the solution
approaches xi = 0 for i �= i∗ and xi∗ = ±(ui∗/c1)

1/p+1,
which completes the proof.

V. DISCUSSION ON ONE-SIDED COMPETITION VERSUS

CLOSELY MATCHED COMPETITION

In this section, we provide a comparison of an one-sided
competition and a closely matched competition using the
proposed model.

Imagine a football game. There are only two neurons, and
the competition happens between the two teams. If one team
has an overwhelming strength, it may demonstrate an obvious
advantage over its opponent in a very early stage, whereas
it often takes a relatively long time for a fierce competition
between two closely matched teams to demonstrate a clear win
or loss. Analogously, we may expect to observe a fast conver-
gence in the WTA competition, where a distinct advantage
for one neuron over others exists while a slow convergence
for closely matched competitions. Theoretically speaking, this
expectation corresponds to the statement that the convergence
rate of the WTA competition has a strong dependence on the
comparisons of the input value of the winner and the input val-
ues of the others. This phenomenon can be explained by (11).
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Fig. 4. Comparisons of the neural state trajectories in the static competition scenario with 15 neurons under p = 0, p = 0.5, p = 1, p = 1.5, p = 2, and
p = 2.5.

For simplicity, we consider the case with parameter c0 = c1 =
p = 1 in (11)

ẋ = u ◦ x − ‖x‖2x (27)

where ‖x‖ represents the Euclidean norm of the vector x .
As there exists a strong nonlinearity in (27), it is difficult to
analyze the convergence rate directly. Nevertheless, we can
approximately analyze the convergence rate by considering
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Fig. 5. Comparisons of the neural state trajectories of the static competition scenario in presence of additive noise under the norm parameter p = 0, p = 1,
and p = 1.5 and noise level σ = 0.1, σ = 0.5, and σ = 1.

its linearization about the equilibrium point. According to
Theorem 1, the stable equilibrium point is xe =
±(ui∗/c1)

1/p+1ei∗ = ±√
ui∗ei∗ , where i∗ denotes the label

of the winner and ei∗ denotes an n-dimensional vector with
the i∗th element being 1 and all the other elements being zeros.
The linearized system around this fixed point is

ẋ = (
diag(u) − 2xex T

e − ‖xe‖2 In
)
x (28)

where In is an n × n identity matrix. The system matrix of
the above system is a diagonal matrix and its j th diagonal
component, which is also its j th eigenvalue, is (u j − ui∗ ) for
j �= i∗ and −2ui∗ for j = i∗. The linear system (28) has all
eigenvalues negative and its convergence rate is determined
by the largest eigenvalue 2ui∗ . In other words, (27) has an
approximate convergence rate 2ui∗ .

VI. SIMULATION EXAMPLES

In this section, simulations are provided to illustrate
the WTA competition phenomenon generated by the neural
dynamic (11). We consider two scenarios: one is static com-
petition, i.e., the input u is constant, and the other is dynamic
competition, i.e., the input u is time-varying.

A. Static Competition

1) Simulation Setup: For the static competition problem, we
consider time-invariant signals as the input. In the simulation,
we consider a problem with n = 15 neurons. The input u is
randomly generated between 0 and 1, which is u = [0.9619,
0.0046, 0.7749, 0.8173, 0.8687, 0.0844, 0.3998, 0.2599,
0.8001, 0.4314, 0.9106, 0.1818, 0.2638, 0.1455, 0.1361], and
the state is randomly initialized between −1 and 1, which is
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x(0) = [0.7386, 0.1594, 0.0997, −0.7101, 0.7061, 0.2441,
−0.2981, 0.0265, −0.1964, −0.8481, −0.5202, −0.7534,
−0.6322, −0.5201, −0.1655]. In the simulation, we choose
c0 = c1 = 1.

2) Convergence: Fig. 4 shows the evolution of state val-
ues of all neurons with time under different choice of the
parameter p. From this figure, it can be observed that only
a single state (corresponds to the first neuron, which has the
largest value in u) has a nonzero value eventually and all the
other state values are suppressed to zero. Also, the value of
x1 approaches u5

1/p+1 (note that we choose c1 = 1 in this
simulation example), which is consistent with the claim made
in Theorem 1 since the initial value x1(0) > 0.

3) Convergence Speed: As can be observed in Fig. 4, it
takes about 14 s for the model to converge for p = 0, 30 s for
p = 0.5, 80 s for p = 1, 350 s for p = 1.5, and more than
1000 s for p = 2, which implies that a faster convergence can
be obtained by choosing a smaller p in the proposed model
for p ≥ 0.

4) Robustness Against Additive Noise: In the real imple-
mentation of the proposed model, additive noise resulting from
the computation error, quantization error, system noise, etc.,
may enter the input channel. In this situation, the steady-state
value of 0 for the loser and ±(ui∗/c1)

1/p+1 for the winner
cannot be reached accurately. However, it can be expected that
the neural states still converge to the vicinity of the desired
values when the additive noise is within certain level. The
readers are referred to [32]–[35] for theoretical investigations
of the robustness of a general recurrent neural network against
the uncertainties in delay, disturbance, etc. In this part, we
explore such a property of the proposed model by simulation
and compare the robustness of the proposed model under
different choices of the parameter p.

The noise-polluted neural network model considered in this
part writes for the i th neuron as

ẋi = c0

(
ui − c1‖x‖p+1

p+1

)
|xi |psgn(xi ) + vi (29)

where vi is a Guassian white noise with zero mean and σ 2

variance and is independent of v j for i �= j . In the simulation,
we choose three different noise levels, i.e., σ = 0.1, 0.5,
and 1, to evaluate the performance of the proposed model.
Fig. 5 plots the evolution of the neural state trajectories
in presence of additive noise under the norm parameter
p = 0, p = 1, p = 1.5, and noise level σ = 0.1, σ = 0.5, and
σ = 1. From this figure, we can observe that the neural states
are still able to converge to the vicinity of the desired value in
the presence of additive noise with a small value of σ , which
reveals the robustness of the proposed model to noisy inputs.
With the increase of σ , the neural state value becomes more
and more noisy. For the same level of noise (i.e., the same σ ),
it can be observed from Fig. 5 that the proposed model with
a smaller p is less sensitive to the influence of the additive
noise. Particularly for σ = 1, as shown in Fig. 5, the winner
can still demonstrate a clear difference from the losers in state
value for the cases with p = 0 and p = 1, while the state
values almost mix together for the case with p = 1.5.
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Fig. 6. Simulation results for the dynamic WTA competition.

B. Dynamic Competition

In this part, we consider the scenario with time-varying
inputs. For the dynamic system (11), the convergence can
be accelerated by choosing a large scaling factor c0 and a
small value of p for p ≥ 0. The resulting fast response allows
the computation of the winner in real time with time-varying
input u(t). In the simulation, we choose c0 = 104, c1 = 1,
p = 0, and consider n = 3 neurons with input ui (t) =
1 + sin(2π t + (2π i/3)) for i = 1, 2, 3, respectively. The
initial state values are randomly generated between 0 and 1.
The four input signals and the absolute value of the state
variables are plotted in Fig. 6. From this figure, we can see
that the system can successfully find the winner in real time.
Note that, according to the Theorem 1, the output value of
the winner is ui∗ for p = 0 (recall that the state values are
initialized greater than zero in this simulation), which is equal
to the value of the input.

VII. CONCLUSION

In this paper, a recurrent neural network was proposed
to explain and generate the WTA competition. In contrast
to existing models, this dynamic equation features a simple
expression and extends the case with Euclidean norm term for
neural interaction to the more general p-norm cases. The fact
that the state value of the winner converges to be active while
the others get deactivated was proven theoretically. The con-
vergence rate was discussed based on a local approximation.
Simulations with both static inputs and dynamic inputs were
performed. Convergence speed and robustness of the proposed
model against additive noise were also explored by simulation.
The results validates the effectiveness of the proposed model.
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