
Commun Nonlinear Sci Numer Simulat 18 (2013) 435–442
Contents lists available at SciVerse ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns
Short communication

A nonlinear model to generate the winner-take-all competition

Shuai Li a,⇑, Yunpeng Wang b, Jiguo Yu c, Bo Liu d

a Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
b Department of Electrical and Computer Engineering, University of Miami, FL 33124, USA
c School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, China
d Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA
a r t i c l e i n f o

Article history:
Received 22 January 2012
Accepted 20 July 2012
Available online 6 August 2012

Keywords:
winner-take-all
Positive feedback
Negative feedback
Nonlinear
Competition
1007-5704/$ - see front matter � 2012 Elsevier B.V
http://dx.doi.org/10.1016/j.cnsns.2012.07.021

⇑ Corresponding author. Tel.: +1 02015150958.
E-mail address: lshuai@stevens.edu (S. Li).
a b s t r a c t

This paper is concerned with the phenomenon of winner-take-all competition. In this
paper, we propose a continuous-time dynamic model, which is described by an ordinary
differential equation and is able to produce the winner-take-all competition by taking
advantage of selective positive–negative feedback. The global convergence is proven ana-
lytically and the convergence rate is also discussed. Simulations are conducted in the static
competition and the dynamic competition scenarios. Both theoretical and numerical
results validate the effectiveness of the dynamic equation in describing the nonlinear phe-
nomena of winner-take-all competition.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Competition widely exists in nature and the society. Among different kinds of competitions, winner-take-all competition
refers to the phenomena that individuals in a group compete with each others for activation and only the one with the high-
est input stays activated while all the others deactivated. Examples of this type of competition include the dominant growth
of the central stem over others [1], the contrast gain in the visual systems through a winner-take-all competition among neu-
rons [2], competitive decision making in the cortex [3,4], cell fate competition [5,6], etc.

Although many phenomena, as exemplified above, demonstrate the same winner-take-all competition, they may have
different underlying principles in charge of the dynamic evolution. There are various mathematic models presented to
describe this type of competition phenomena, e.g., the N species Lotka–Volterra model [7,8], interactively spiking
FitzHugh–Nagumo Model [9–11], optimization based model [12,13], discrete-time different equation model [14], neural
network model [15,16], lateral inhabitation model [17,18], to name a few. However, these models are often very
complicated due to the compromise with experimental realities in the particular fields. Consequently, the essence of
the winner-take-all competition may be embedded in the interaction dynamics of those models, but difficult to tell from
the sophisticated dynamic equations. Motivated by this, a simple ordinary differential equation model with a direct and
intuitive explanation is presented in this paper and it is expected to cast lights to researchers on the principle of
competition phenomena in different fields.

The remainder of this paper is organized as follows: in Section 2, the analytical model is presented and the underlying
competition mechanism is explained from a selective positive–negative feedback perspective. In Section 3, the competition
. All rights reserved.
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behavior and the convergence results are proven rigourously by means of nonlinear stability tools. In Section 4, illustrative
examples are given to show the effectiveness of the proposed model. The paper is concluded in Section 5.

2. The model

The proposed model has the following dynamic for the ith agent in a group of totally n agents,
_xi ¼ c0ðui � kxk2Þxi ð1Þ
where xi 2 R denotes the state of the i agent, ui 2 R is the input and ui P 0; ui – uj for i – j; kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ � � � þ x2

n

q

denotes the Euclidean norm of the state vector x ¼ ½x1; x2; . . . ; xn�T ; c0 2 R c0 P 0 is a scaling factor.
The dynamic Eq. (1) can be written into the following compact form by stacking up the state for all agents,
_x ¼ c0ðu � x� kxk2xÞ ð2Þ
where x ¼ ½x1; x2; . . . ; xn�T ; u ¼ ½u1;u2; . . . ;un�T , the operator ‘�’ represents the multiplication in component-wise, i.e.,
u � x ¼ ½u1x1;u2x1; . . . ; unxn�T .

Remark 1. In the dynamic Eq. (1), all quantities on the right hand side can be obtained locally from the ith agent itself (ui

and xi) except the quantity kxk2, which reflects the effort from other agents over the ith one (as sketched in Fig. 1). Actually,
kxk2 ¼ x2

1 þ x2
2 þ � � � þ x2

n is the second moment about the origin of the group of agents and it is a statistic of the whole group.
In this regard, the dynamic model (1) implies that the winner-take-all competition between agents may emerge in a multi-
agent system if each agent accesses the global statistic kxk2 (instead of exactly knowing states of all the other agents) besides
its own information.

As will be stringently demonstrated later, the agent with the largest input will finally win the competition and keep active
while all the other agents will be deactivated to zero eventually. Before proving this result rigorously, we present a intuitive
explanation of the result in a sense of positive feedback vs. negative feedback. Note that the term c0uixi in Eq. (1) provides a
positive feedback to the state variable xi as ui P 0 while the term �c0kxk2xi supplies a negative feedback. For the ith agent, if
ui ¼ kxk2; xi will keep the value. If ui < kxk2, the positive feedback is less than the negative feedback in value and the state
value attenuates to zero. In contrast, if ui > kxk2, the positive feedback is greater than the negative feedback and the state
value tends to increase as large as possible until the resulting increase of kxik surpasses ui. Particularly for the winner,
say the k�th agent, uk� > ui holds for all i – k�. In this case, all agents have negative feedbacks and keep reducing in values
until kxk2 reduces to the value of uk when uk < kxk2. Otherwise when uk is slightly greater than kxk2 (by slightly greater we
mean uk > kxk2

> ul with l denoting the agent with the second largest state value), only the winner has a positive feedback
and has an increase in its state value while all the other agents have negative feedbacks and keep reducing until kxk2 equals
uk. Under this selective positive–negative feedback mechanism, the winner finally stays active at the value uk� ¼ kxk2 while
the losers are deactivated to zero.
Fig. 1. Information flow for the agent dynamics.
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3. Theoretical analysis and results

In this section, theoretical results on the dynamic system (1) are presented. The rigorous proof of the main results needs
the uses of LaSalle’s invariant set principle [19,20], local stability analysis and the ultimate boundedness theory [21].

Lemma 1 [21]. Let D � Rn be a domain that contains the origin and V : ½0;1Þ �D! R be a continuous differentiable function
such that
a1ðkxkÞ 6 Vðt; xÞ 6 a2ðkxkÞ ð3Þ

_V ¼ @V
@t
þ @V
@x

f ðt; xÞ 6 �WðxÞ; 8kxkP l > 0 ð4Þ
8t P 0 and 8x 2 D, where a1 and a2 are class K functions and WðxÞ is a continuous positive definite function. Take r > 0 such that
Br � D and suppose that l < a�1

2 ða1ðrÞÞ. Then, there exists a class KL function b and for every initial state xðt0Þ, satisfying
kxðt0Þk 6 a�1

2 ða1ðrÞÞ, there is T P 0 (dependent on xðt0Þ and l) such that the solution of _x ¼ f ðt; xÞ satisfies,
kxðtÞk 6 a�1
1 ða2ðlÞÞ 8t P t0 þ T ð5Þ
Moreover, if D ¼ Rn and a1 belongs to class K1, then the result (6) holds for any initial state xðt0Þ, with no restriction on how large
l is.

With Lemma 1, we are able to prove the following lemma for our main result,

Lemma 2. There exists T P 0 (dependent on xðt0Þ and l) such that the solution of the agent dynamic Eq. (2) satisfies,
kxðtÞk 6 l 8t P t0 þ T ð6Þ
where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfu1;u2; . . . ;ung

p
þ d with d > 0 being any positive constant.
Proof. We prove the result by following the framework of Lemma 1. Let D ¼ Rn; V ¼ 1
2 xT x and

a1ðkxkÞ ¼ a2ðkxkÞ ¼ 1
2 kxk

2 ¼ V . For V, we have,
_V ¼ xT _x ¼ c0xTðu � x� kxk2xÞ ¼ c0xT diagðuÞx� kxk2x
� �

¼ c0xT diagðuÞ � kxk2
� �

x 6 c0ðu0 � kxk2ÞxT x ð7Þ
The equation u � x ¼ diagðuÞx is used in the second step of the above derivation. Note that diagðuÞ � kxk2
� �

is a diagonal ma-
trix and its largest eigenvalue is u0 � kxk2. Therefore, xT diagðuÞ � kxk2

� �
x 6 ðu0 � kxk2ÞxT x, from which the last inequality in

(7) is obtained. As ui P 0 for all i and ui – uj for i – j, we get u0 > 0. Recall l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfu1;u2; . . . ;ung

p
þ d, i.e., l ¼ ffiffiffiffiffi

u0
p þ d for

any small positive d > 0. For kxkP l; u0 � kxk2
6 �d2. Together with (7), we get,
_V 6 �c0d
2xT x ð8Þ
for kxkP l. Choosing a positive definite function WðxÞ ¼ c0d
2xT x yields _V 6 �WðxÞ for 8kxkP l. Therefore, according to

Lemma 1, there exists T P 0 such that the solution satisfies kxðtÞk 6 a�1
1 ða2ðlÞÞ ¼ l; 8t P t0 þ T . This completes the

proof. h
Remark 2. Lemma 2 means the state of the dynamic model (2) is ultimately bounded inside a compact super ball in Rn with
radius l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfu1;u2; . . . ;ung

p
þd. In other words, this super ball is positively invariant with respect the system dynamic

(2). This result allows us to apply LaSalle’s invariant set principle for further investigation of the system behaviors.
Lemma 3 [19]. Let X � D be a compact set that is positively invariant with respect to _x ¼ f ðxÞ. Let V : D! R be a C1-function
such that _VðxÞ 6 0 on X. Let E be the set of all points in X such that _VðxÞ ¼ 0. Let M be the largest invariant set in E. Then, every
solution starting in X approaches M as t !1.
Remark 3. It is worth noting that the mapping V in Lemma 3 is not necessary to be positive definite, which is a major dif-
ference from the Lyapunov function in conventional stability analysis of dynamic systems [19]. Instead, V is required to be be
a continuous differentiable function in Lemma 3, which is much looser than the positive definite requirement and simplifies
the analysis.
Theorem 1. The solution of the system involving n dynamic agents with the ith agent described by (1) globally approaches 0 for
i – k� and approaches

ffiffiffiffiffiffiffi
uk�
p

or � ffiffiffiffiffiffiffi
uk�
p

for i ¼ k� as t !1, where k� denotes the label of the winner, i.e., k� ¼ argmax
fu1;u2; . . . ;ung.
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Proof. There are two steps for the proof. The first step is to prove that the state variable ultimately converges to a set con-
sisting of a limit number of points and the second step proves there is only a single point among the candidates is stable.

Step 1: According to Lemma 2, the state variable x in the system dynamic (2) is ultimately bounded by a compact super
ball in Rn with radius l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfu1;u2; . . . ;ung

p
þ d, which implies this super ball is positively invariant with respect the

system dynamic (2) and the super ball fx 2 Rnjkxk 6 lg is qualified to be the set X in Lemma 3.
Let V ¼ � 1

2 xT diagðuÞxþ 1
4 kxk

4. Apparently, V is a C1-function. For V, we have,
_V ¼ �xT diagðuÞ _xþ kxk2xT _x ¼ �xT diagðuÞ þ kxk2xT
� �

_x ð9Þ
With xT diagðuÞ ¼ ðx � uÞT , we get xT diagðuÞ � kxk2xT ¼ ðx � u� kxk2xÞT . Together with (9), we have,
_V ¼ �c0ðx � u� kxk2xÞTðx � u� kxk2xÞ ¼ �c0kx � u� kxk2xk2
6 0 ð10Þ
We find diagðuÞx ¼ kxk2x by letting _V ¼ 0. Note that diagðuÞx ¼ kxk2x is actually a eigenvector equation relative to the matrix
diagðuÞ. The solution can be solved as the set M ¼ f0;	 ffiffiffiffi

ui
p

ei for i ¼ 1;2; . . . ; ng, where ei is a n-dimensional vector with the
ith component 1 and all the other component 0. According to Lemma 3, every solution starting in X ¼ fx 2 Rnjkxk 6 lg ap-
proaches M as t !1. Together with the fact proven in Lemma 2 that every solution stays in X ultimately, we conclude that
every solution with the initialization xðt0Þ 2 Rn approaches M as t !1.

Step 2: We have shown that there are several candidate fixed points to stay for the dynamic system. In this step, we show
that all those fixed points in M are unstable except x ¼ 	 ffiffiffiffiffi

uk
p

ek, where k� ¼ argmaxfu1;u2; . . . ;ung. Lyapunov’s indirect
method suffices the analysis of the un-stability.

For the fixed point xe ¼ 0, the system dynamic (2) is linearized as _x ¼ c0diagðuÞx about x ¼ 0 and is unstable as the
eigenvalues of the system matrix c0diagðuÞ have positive real parts.

For the fixed points xe ¼ 	
ffiffiffiffi
ui
p

ei, the linearized system around the fixed point is as follows,
_x ¼ c0 diagðuÞ � 2xexT
e � kxek2

� �
x ð11Þ
The system matrix of the above system is a diagonal matrix and its jth diagonal component, which is also its jth eigenvalue, is
c0ðuj � uiÞ for j – i and �2c0 for j ¼ i. Clearly, all the eigenvalues have negative real part only when uj � ui < 0 holds for all
j – i, i.e., when i ¼ k�, which excludes all fixed points except for xe ¼ 	

ffiffiffiffiffiffiffi
uk�
p

ek� from the stable ones.
In summary, we conclude that every solution approaches x ¼ 	 ffiffiffiffiffiffiffi

uk�
p

ek� ultimately with k� ¼ argmaxfu1; u2; . . . ;ung and
ek� being a n-dimensional vector with the k�th component 1 and all the other component 0. Entrywisely, the solution
approaches xi ¼ 0 for i – k� and xk� ¼ 	

ffiffiffiffiffiffiffi
uk�
p

, which completes the proof. h
Remark 4. According to Theorem 1, the steady-state value of the winner is either
ffiffiffiffiffiffiffi
uk�
p

or � ffiffiffiffiffiffiffi
uk�
p

. Actually, we can conclude
that it is

ffiffiffiffiffiffiffi
uk�
p

if the initial state of the winner is positive while it is � ffiffiffiffiffiffiffi
uk�
p

if the initial value is negative by noting that _xk� ¼ 0
when xk� ¼ 0 in (1) for i ¼ k�, which means the state value xk� will never cross the critical value x� ¼ 0.
4. Illustrative examples

In this section, simulations are provided to illustrate the the winner-take-all competition phenomena generated by the
agent dynamic (1). We consider two sceneries: one is static competition, i.e., the input u is constant and one is dynamic com-
petition, i.e., the input u is time-varying.

4.1. Static competition

For the static competition problem, we consider time invariant signals as the input. In the simulation, we consider a prob-
lem with n ¼ 15 agents. The input u is randomly generated between 0 and 1, which is u ¼ ½0:0924, 0:0078, 0:4231, 0:6556,
0:7229, 0:5312, 0:1088, 0:6318, 0:1265, 0:1343, 0:0986, 0:1420, 0:1683, 0:1962, 0:3175�, and the state is randomly initialized
between �1 and 1, which is xð0Þ ¼ ½0:7556, 0:1649, �0:8586, 0:8455, 0:6007, �0:4281, 0:0873, 0:9696, 0:4314, 0:6779,
�0:1335, �0:0588, 0:1214, �0:4618, 0:4980�. In the simulation, we choose the scaling factor c0 ¼ 1. Fig. 2 shows the evolu-
tion of state values of all agents with time, from which it can be observed that only a single state (corresponds to the 5th
agent, which has the largest value in u) has a non-zero value eventually and all the other state values are suppressed to zero.
Also, the value of x5 approaches

ffiffiffiffiffi
u5
p

(see Fig. 2), which is consistent with the claim made in Remark 4 since the initial value
x5ð0Þ ¼ 0:6007 > 0.

To fully visualize the interaction between agents, we consider a three agent case with u ¼ ½0:7368;0:2530;0:4117�. Fig. 3
shows the phase plot of the state in three-dimensional space and its projections in two-dimensional space. Clearly, we can
see that the states with the initial state value of the winner being negative (i.e., x1ð0Þ < 0) is attracted to ½� ffiffiffiffiffi

u1
p

;0;0� while is
attracted to ½ ffiffiffiffiffiu1

p
;0;0� for the cases with positive initial state values of the winner (i.e., x1ð0Þ > 0). It is worth noting that x1ðtÞ

appears staying at 0 in the situation with x1ð0Þ ¼ 0 in Fig. 3, which seems in contradiction with the statement that the winner
x1ðtÞ converges to either

ffiffiffiffiffi
u1
p

or � ffiffiffiffiffi
u1
p

eventually. Actually, as mentioned in the proof of the Theorem 1, all fixed points are



Fig. 2. Agent state trajectories in the static competition scenario with 15 agents.

(a)

(c)

(b)

(d)

Fig. 3. Phase plot of the three-agent system without noises.
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unstable except 	 ffiffiffiffiffiffiffi
uk�
p

ek� (k� denotes the label of the winner and ek� is a n dimensional vector with the k�th element being 1
and all the other elements being zeros). Therefore, in this case, the state with x1 ¼ 0 is unstable and must be very subjective
to disturbances. To show this, we plug a small random Gaussian white noise with zero mean and 0:0001 variance into the
agent dynamic (1). In equation, the resulting dynamic for the ith agent is _xi ¼ c0ðui � kxk2Þxi þ 0:0001v i, where v i is a Gauss-
ian white noise with zero mean unit variance and it is independent with v j for j – i. Even with such a small perturbation with
a magnitude of 0:0001, the states with x1ð0Þ ¼ 0 either converge to ½ ffiffiffiffiffiu1

p
;0;0� or ½� ffiffiffiffiffi

u1
p

;0;0� instead of staying at x1 ¼ 0 as
shown in Fig. 4 and Fig. 5, where the state is initialized at xðt0Þ ¼ 0� ½�1;�0:5;0;0:5;1�2.



Fig. 4. Time history of the three-agent system with small perturbations.

(a) (b)

(c) (d)

Fig. 5. Phase plot of the three-agent system with small perturbations.
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4.2. Dynamic competition

In this part, we consider the scenario with time-varying inputs. For the dynamic system (1), the convergence can be accel-
erated by choosing a large scaling factor c0, and the resulting fast response allows the computation of x in real time with
time-varying input uðtÞ. In this simulation, we choose c0 ¼ 104 and consider n ¼ 4 agents with input uiðtÞ ¼ 1þ
sinð2pt þ 0:25iÞ for i ¼ 1;2;3;4, respectively. The initial state valued are randomly generated between �1 and 1. The four



Fig. 6. Inputs and outputs of the dynamic system in the dynamic competition scenario.
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input signals and the absolute value of the state variables are plotted in Fig. 6. From this figure, we can see the system can
successfully find the winner in real time.

5. Conclusions

In this paper, the winner-take-all competition among agents in a group is considered and an ordinary differential equa-
tion describing the dynamics of each agent is proposed. In contrast to existing models, this dynamic equation features a sim-
ple expression and an explicit explanation of the competition mechanism, which is expected to help researchers gain some
insights into the winner-take-all phenomena in their specialized fields. The fact that the state value of the winner converges
to be active while the others deactivated is proven theoretically. The convergence rate is discussed based on a local approx-
imation. Simulations with both static inputs and dynamic inputs are performed. The results validate the effectiveness of the
dynamic equation in describing the nonlinear phenomena of winner-take-all competition.
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