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This paper studies the decentralized kinematic control of multiple redundant manipulators for the

cooperative task execution problem. The problem is formulated as a constrained quadratic program-

ming problem and then a recurrent neural network with independent modules is proposed to solve the

problem in a distributed manner. Each module in the neural network controls a single manipulator in

the common task. The global stability of the proposed neural network and the optimality of the neural

solution are proven in theory. Application orientated simulations demonstrate the effectiveness of the

proposed method.
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1. Introduction

With the development of mechanics, electronics, computer
engineering, etc., using a collection of manipulators to perform a
common task, such as load transport [1], cooperative assembly [2],
dextrous grasping [3], coordinate welding [4], etc., is becoming
increasingly popular and has received considerable studies. The
solution of executing the task using redundant manipulators, which
have more degree-of-freedom (DOF) than required, normally is not
unique. The extra design degrees can be exploited for obstacle
avoidance, performance optimization and so on to improve the
performance.

A fundamental issue in multiple redundant manipulator con-
trol is the redundancy resolution problem, which provides fea-
sible solutions in the joint space to a task in the Cartesian space.
Conventionally, the general solution of redundancy resolution is
obtained by solving a set of redundant time-varying linear [5,6].
However, as pointed in [7,8], this type of method cannot generate
a repeatable solution and the drift of joint angles is unavoidable.
Authors in [9] formulate the problem of single redundant manip-
ulator kinematic control as a constrained optimization problem
ll rights reserved.
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and opened an avenue to study the redundancy resolution
problem using optimization based methods [10,11]. In [12],
a penalty term is introduced into the objective function to restrict
the solution inside a physically feasible range. This method
enables direct monitoring and control of the magnitudes of the
individual joint torques. However, the solution is merely an
approximate solution of the problem and the approximation error
strongly depends on the coefficient of the penalty term. To fix this
problem, in [13], the optimization problem is studied in the dual
space and dual neural networks are developed to solve the
problem in real time. Further performance improvements of the
dual neural network approach, such as convergence time, archi-
tecture complexity, etc., are obtained in the successive studies
[14–16]. In [17], a local optimization approach is proposed to
resolve the kinematic control problem of redundant manipula-
tors. This approach is applicable to either serial manipulators or
parallel manipulators but the result is a locally optimal one
instead of globally. In [18], an optimal real-time redundancy
resolution scheme is proposed to solve the problem. The optimal
control law can be derived in real-time using adaptive critic
framework after a period of off-line training. An analytic-iterative
solution is presented in [19] to solve the redundancy resolution
problem formulated as an inequality constrained convex optimi-
zation problem. The optimization based formulation framework
also allows us to analyze the multiple redundant manipulator
cooperative task execution problem. However, the framework
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does not provide any information about how to design a decen-
tralized control strategy not requiring explicit information from
other manipulators.

In this paper, the cooperative task execution problem is
formulated as a separable constrained quadratic programming
problem. Benefiting from the separable property of our formula-
tion, this problem can be decoupled into a collection of subpro-
blems, each of which corresponds to a single manipulator.
Inspired by the real-time optimization capability of recurrent
neural networks [20–27], a dual recurrent neural network, which
has separate modules associated with every manipulator in the
collection, is designed to solve the problem in real time. To the
best of our knowledge, this is the first time that the dual recurrent
neural network method [28–30] is extended to the decentralized
control of multiple redundant manipulator systems.

In contrast to the great success of recurrent dual neural
network based kinematic control of a single redundant manip-
ulator, there has been very little attention to the solution on
cooperative control of collaborative redundant manipulators
employing dual neural networks. In this background, the dual
neural network approach is extended to solve the kinematic
control problem of multiple redundant manipulators. Compared
to existing dual neural networks [20,22,24,25,28–30], a promi-
nent feature of the proposed neural network lies in its different
architecture, which is composed of separate modules associated
with every manipulator. This feature enables a completely decen-
tralized control of multiple manipulators.

The remainder of this paper is organized as follows. In Section 2,
the multiple manipulator cooperative task execution problem is
formulated as a constrained quadratic programming problem. In
Section 3, a recurrent neural network with separate modules are
proposed to solve the problem in real time. In Section 4, the global
stability of the proposed neural network and the optimality of the
neural solution are proven in theory. In Section 5, simulations are
performed to validate the effectiveness of the proposed method.
Section 6 concludes this paper.
2. Problem formulation

In this section, we describe the problem of cooperative task
execution with multiple redundant manipulators. Firstly a brief
introduction on the redundant manipulator kinematics is given
and then, based on this, the multiple manipulator task execution
problem is formulated as a constrained quadratic programming
problem.

2.1. Redundant manipulator kinematics

For a redundant manipulator, the position and orientation of
its end-effector is uniquely determined by its configuration in the
joint space, i.e., for a m-DOF redundant manipulator working in a
n-dimensional Cartesian space, there exists the following single-
valued mapping:

rðtÞ ¼ f ðyðtÞÞ ð1Þ

where rðtÞARn and yðtÞARm with m4n are the coordinate of the
manipulator in the Cartesian space at time t and the coordinate in
the joint space, respectively. The mapping f ð�Þ is a nonlinear
function with known parameters for a given manipulator. Calcu-
lating time derivative on both sides of (1) yields,

_rðtÞ ¼ JðyðtÞÞ _yðtÞ ð2Þ

where _rðtÞARn and _yðtÞARm are the velocity of the manipulator
in the Cartesian space and that in the joint space, respectively.
JðyðtÞÞ ¼ @f ðyðtÞÞ=@yðtÞ is the Jacobian matrix. Apparently, _rðtÞ is an
affine function with respect to _yðtÞ and is relatively easier to deal
with compared with the nonlinear mapping (1).

In robotics, the problem of velocity inverse kinematics is con-
cerned with finding a solution _yðtÞ for the manipulator model (2)
with given desired velocity _rðtÞ in Cartesian space and known
manipulator model Jð�Þ. For redundant manipulators, nom, which
means the number of equalities in the velocity inverse kinematic
problem is less than the number of dimensions of the decision
variable _yðtÞ, and therefore normally the solution to this problem is
not unique. This property of redundant manipulators enables us to
select the best solution among all the feasible ones according to
certain optimum criteria and extra constraints. Possible optimum
criteria includes minimum of the Euclidian norm or the infinity
norm of the joint velocity vector and possible constraints include
joint angle limits, joint speed limits, etc.

2.2. Cooperative task execution using multiple manipulators

Consider the problem of payload transport with a collection of
redundant manipulators. The goal is to cooperatively move the
payload along a desired reference trajectory with the end-effector
of each manipulator holding a different place or a handle on the
payload. This task involves two aspects: first, a reference point on
the payload, e.g., the center of mass, is expected to track the
reference trajectory. Second, the end-effectors are expected to
maintain the original formation in space. Note that the second
aspect is required to avoid stretching or squeezing of the payload
possibly arising from the relative movement between the end-
effectors and this requirement can be satisfied by moving all end-
effectors with the same velocity as the reference point. By
assigning a reference tracking velocity, denoted by vd(t), along
the desired reference trajectory with a given absolute value, the
first aspect of the task can be achieved by velocity control and the
second aspect can be satisfied by steering all end-effectors with
the same velocity in the Cartesian space. In a word, the two
aspects of the task can be achieved by steering end-effectors of all
manipulators with the same velocity vd(t). In equation,

JiðyiðtÞÞ
_yiðtÞ ¼ vdðtÞ for i¼ 1;2, . . . ,k ð3Þ

where vdðtÞARn denotes the desired velocity of the reference
point on the payload at time t, yiðtÞARm and _yiðtÞARm are the
coordinate and the velocity of the i th manipulator in the joint
space at time t, respectively, JiðyiðtÞÞARn�m is the Jacobian matrix
of the ith manipulator at time t, k denotes the number of
manipulators. Without introducing confusions (3) is abbreviated
into the following form for easy reading,

Ji
_yi ¼ vd for i¼ 1;2, . . . ,k ð4Þ

where vd, yi,
_yi and Ji are short for vd(t), yiðtÞ,

_yiðtÞ and JiðyiðtÞÞ in (3),
respectively. As the velocity mapping from the joint space to the
Cartesian space is affine as shown in (2), using velocity control of the
collection of manipulators thoroughly simples the design, compared
with the direct position control based on the nonlinear transforma-
tion (1). In addition, resulting from the redundancy property of
redundant manipulators, the solution satisfying the above men-
tioned two aspects of the task is not unique, which allows us to take
extra optimization criteria and constraints into account. Without
loss of generality, we minimize the Euclidean norm squared of the

joint velocities, i.e.,
Pk

i ¼ 1
_y

T

i
_yi and impose the joint velocity con-

straints Z�r _yirZþ , to exploit the extra design freedoms. In
summary, the cooperative task execution problem can be formu-
lated as follows:

minimize
1

2

Xk

i ¼ 1

_y
T

i
_yi
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subject to J1
_y1 ¼ vd,J2

_y2 ¼ vd, . . . ,Jk
_yk ¼ vd

Z�r _y1rZþ ,Z�r _y2rZþ , . . . ,Z�r _ykrZþ ð5Þ

where k denotes the number of manipulators, vdARn is the desired

velocity of the reference point, yiARm and _yiARm are the coordi-

nate and the velocity of the i th manipulator in the joint space for

i¼ 1;2, . . . ,k, respectively. JiARn�m is the Jacobian matrix of the ith

manipulator for i¼ 1;2, . . . ,k. Zþ ARm and Z�ARm are the upper
and lower limit of the allowed velocity in the joint space.

Remark 1. In the problem formulation (5), the kinematic con-
straints (or more exactly, joint velocity limits and reference
velocity constraints) are considered. Constraints, such as joint
limits and collision avoidance, however, are not considered
explicitly in (5). Actually, as done in [30], the joint limit constraint
can be included in the formulation (5) by imposing extra inequal-
ity constraints on _yi as follows:

c0ðy
�
�yiÞr _yirc0ðy

þ
�yiÞ

where yþ ARm and y�ARm are the upper and lower limit of the
allowed angle in the joint space, c0AR, c040 is a coefficient.
Similarly, collision avoidance can be taken into account by
following the inequality-based obstacle avoidance QP method
proposed in [31], which also imposes linear inequality constraint
on _y.

Until now, the cooperative task execution problem has been
formulated as an optimization problem, a quadratic programming
problem to be more accurate, with respect to the decision
variables _y1, _y2, . . . , _yk. Numerical methods are available to solve
this problem point by point at every sampling time. However, this
strategy has a total computation time inversely proportional to
the sampling period and is very computationally intensive when
the sampling period is relatively short, not to mention continuous
control, which is equivalent to the case with a zero sampling
period. This motivates our study to explore the recurrent neural
network method for real-time optimization of the problem.
3. Real-time control via recurrent neural networks

In this section, a recurrent neural network is designed to
complete the online optimization of the cooperative task execu-
tion problem (5).

According to Karash–Kuhn–Tucker (KKT) conditions [32], the
solution to problem (5) satisfies

_yi ¼�JT
i li�mi ð6aÞ

Ji
_yi ¼ vd ð6bÞ

_yi ¼ Zþ if mi40

Z�r _yirZþ if mi ¼ 0
_yi ¼ Z� if mio0

8>><
>>:

for i¼ 1;2, . . . ,k ð6cÞ

Remark 2. Benefiting from the fact that the problem (5) is
separable relative to y1,y2, . . . ,yk, the decision variables
y1,y2, . . . ,yk in (6) are completely decoupled. This means that for
all manipulators, greedily minimizing their local cost function
under local constraints (for the ith manipulator, the local cost is
1
2
_y

T

i
_y i and the local constraints are Ji

_y ¼ vd and Z�r _y irZþ Þ,
leads to a collective behavior, which solves the global optimiza-
tion problem (5). This property enables us to design a recurrent
neural network with k separate modules, each of which control a
single manipulator independently but still, all the modules
together, collectively solve the cooperative task executive pro-
blem (5).

Note that (6c) can be simplified into the following form:

_yi ¼ gð _yiþmiÞ for i¼ 1;2, . . . ,k ð7Þ

with gðxÞ ¼ ½g1ðx1Þ,g2ðx2Þ, . . . ,gmðxmÞ�
T for x¼ ½x1,x2, . . . ,xm�

T and
gjðxjÞ to be the following form for j¼ 1;2, . . . ,m:

gjðxjÞ ¼

Zþj if xj4Zþj
xj if Z�j rxjrZþj
Z�j if xjoZ�j

8>><
>>:

ð8Þ

where Z�j and Zþj are the j th elements of Z� and Zþ , respectively.
Substituting (6a) into (7) to cancel out _yi yields,

mi ¼�gð�JT
i liÞ�JT

i li for i¼ 1;2, . . . ,k ð9Þ

which means mi can be explicitly expressed in terms of li for
i¼ 1;2, . . . ,k. _y i can also be expressed in terms of li by substitut-
ing (9) into (6a),

_yi ¼ gð�JT
i liÞ for i¼ 1;2, . . . ,k ð10Þ

Plugging (7) into (6b) yields,

Jigð
_yiþmiÞ ¼ vd for i¼ 1;2, . . . ,k ð11Þ

Canceling out _yi by bringing Eq. (6a) into Eq. (11) generates,

Jigð�JT
i liÞ ¼ vd for i¼ 1;2, . . . ,k ð12Þ

We use a recurrent neural network to solve l1, l2, y, lk in (12) as
follows:

Ei
_li ¼ Jigð�JTliÞ�vd for i¼ 1;2, . . . ,k ð13Þ

where Ei40 for i¼ 1;2, . . . ,k is a scaling factor. Now, a recurrent
neural network is obtained to solve the cooperative task execu-
tion problem (5). This neural network is composed of k modules
corresponding to the k manipulators, and the state and output
equations of the i th module for i¼ 1;2, . . . ,k are summarized as
follows:

state equation Ei
_li ¼ Jigð�JTliÞ�vd ð14aÞ

output equation _yi ¼ gð�JT
i liÞ ð14bÞ

where Ei40 for i¼ 1;2, . . . ,k is a scaling factor, k is the number of
manipulators, and the function gð�Þ is defined in (8).

The recurrent neural network for solving the cooperative task
execution problem (5) consists of k modules, with k equal to the
number of manipulators. Each module is composed of n dynamic
neurons, which equals the dimension of the Cartesian space. In a
three-dimensional space, n¼3 for position control problem and
n¼6 for the case with both position and orientation control. In
each module, there are n dynamic neurons and nðn�1Þ=2 inter-
connections between neurons. Therefore, for the whole neural
network, the total number of neurons is kn and the interconnec-
tion complexity is Oðkn2

Þ, which is polynomially dependent on
the number of manipulators k and the dimension of the Cartesian
space n. Besides the capability of solving the cooperative task
execution problem in a decentralized manner, which cannot be
handled by the conventional recurrent neural network based
method for single manipulator motion control [25,33,34], another
important distinction from them is that our model has a low
architecture complexity and the complexity has no dependence
on m, which is the DOF of the redundant manipulator. This
property simplifies the hardware design for the analog circuit
implementation of the neural network and reduces the cost,
especially for redundant manipulators with a large m. Briefly,
we have the following remark on this point.
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Table 1
Summary of the D-H parameters of the Puma 560 manipulator used in the

simulation.

Link a (m) a (rad) d (m)

1 0 p=2 0

2 0.43180 0 0

3 0.02030 �p=2 0.15005

4 0 p=2 0.43180

5 0 �p=2 0

6 0 0 0.30000
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Remark 3. The neural network presented in this paper consists of
k modules and the whole neural network has a total number of kn

neurons and has an interconnection complexity Oðkn2
Þ, which

does not depend on the DOF of the redundant manipulator. In
addition, The neural network solves the problem in a decentra-
lized manner. This cannot be achieved by the conventional
recurrent dual neural networks.

4. Theoretical results

On the stability, solution optimality of the recurrent neural
network (14) to the problem (5), we have conclusions stated in
the following theorems.

Theorem 1. The recurrent neural network (14) with Ei40 for

i¼ 1;2, . . . ,k is globally stable in the sense of Lyapunov and con-

verges to an equilibrium point ½lnT
1 ,lnT

2 , . . . ,lnT
k �

T .

Proof. To prove the conclusion, the following radially unbounded
Lyapunov function is constructed,

V ¼
Xk

i ¼ 1

Ei

2
ðJigð�JT

i liÞ�vdÞ
T
ðJigð�JT

i liÞ�vdÞ ð15Þ

Note that V is a function of the state variables l1, l2, y, lk. V Z0
and the equality holds when Jigð�JT

i liÞ�vd ¼ 0 for all i¼ 1;2, . . . ,k,
i.e., the equality holds at the equilibrium point ln

i of (14a) for all
i¼ 1;2, . . . ,k. The time derivative of V along the neural network
trajectory (14) can be obtained as follows:

_V ¼�
Xk

i ¼ 1

EiðJigð�JT
i liÞ�vdÞ

T
ðJiD

þ gð�JT
i liÞJ

T
i
_liÞ ð16Þ

where Dþ gð�JT
i liÞ denotes the upper right dini-derivative of the

function gð�JT
i liÞ. According to the definition of gð�Þ in (8),

Dþ gð�JT
i liÞ is a diagonal matrix of the form Dþ gð�JT

i liÞ ¼

diagðc1i,c2i, . . . ,cmiÞ and the j th diagonal element cji is as follows:

cji ¼

1 if Z�j rdjioZþj
0 if djioZ�j or djiZZþj

8<
: ð17Þ

where dji represents the j th element of the vector �JT
i li. From (17),

it is obtained that cjiZ0 for all j¼ 1;2, . . . ,m. Thus, we can express

the diagonal matrix diagðc1i,c2i, . . . ,cmiÞ ¼ diagð
ffiffiffiffiffiffi
c1i
p

,
ffiffiffiffiffiffi
c2i
p

, . . . ,
ffiffiffiffiffiffiffi
cmi
p
Þ

diagT
ð
ffiffiffiffiffiffi
c1i
p

,
ffiffiffiffiffiffi
c2i
p

, . . . ,
ffiffiffiffiffiffiffi
cmi
p
Þ. Based on this, further conclusion holds,

_V ¼�
Xk

i ¼ 1

ððJigð�JT
i liÞ�vdÞ

T Ji diagðc1i,c2i, . . . ,cmiÞJ
T
i ðJigð�JT

i liÞ�vdÞÞ

¼�
Xk

i ¼ 1

ððJigð�JT
i liÞ�vdÞ

T Ji diagð
ffiffiffiffiffiffi
c1i
p

,
ffiffiffiffiffiffi
c2i
p

, . . . ,
ffiffiffiffiffiffiffi
cmi
p
Þ

�diagT
ð
ffiffiffiffiffiffi
c1i
p

,
ffiffiffiffiffiffi
c2i
p

, . . . ,
ffiffiffiffiffiffiffi
cmi
p
ÞJT

i ðJigð�JT
i liÞ�vdÞÞ

¼�
Xk

i ¼ 1

Jdiagð
ffiffiffiffiffiffi
c1i

p
,
ffiffiffiffiffiffi
c2i

p
, . . . ,

ffiffiffiffiffiffiffi
cmi

p
ÞJT

i ðJigð�JT
i liÞ�vdÞJ

2r0 ð18Þ

which means the neural network (14) is globally stable to an

equilibrium point ½lnT
1 ,lnT

2 , . . . ,lnT
k �

T in the sense of Lyapunov [35].

This completes the proof. &

The following Theorem reveals the relation between the
equilibrium point of the neural network and the optimal solution
to the cooperative task execution problem (5).

Theorem 2. Let ½lnT
1 ,lnT

2 , . . . ,lnT
k �

T be an equilibrium point of the

neural network dynamic (14a). The output of this neural network at

½lnT
1 ,lnT

2 , . . . ,lnT
k �

T , which is ½ _y
nT

1 , _y
nT

2 , . . . , _y
nT

k �
T ¼ ½gT ð�JT

1l
n

1Þ,
gT ð�JT
2l

n

2Þ, . . . ,g
T ð�JT

kl
n

kÞ�
T , is the optimal solution to the cooperative

task execution problem (5).

Proof. Since ½lnT
1 ,lnT

2 , . . . ,lnT
k �

T is an equilibrium point of the

ordinary differential Eq. (14a), and ½ _y
nT

1 , _y
nT

2 , . . . , _y
nT

k �
T is the corre-

sponding output, the following holds for all i¼ 1;2, . . . ,k:

Jigð�JT
i l

n

i Þ ¼ vd

_y
n

i ¼ gð�JT
i l

n

i Þ ð19Þ

Defining new variables mn

i ¼�gð�JT
i l

n

i Þ�JT
i l

n

i for all i¼ 1;2, . . . ,k,

then ðln

i ,mn

i , _y
n

i Þ is a solution to the equation set composed of Eqs. (9),

(10) and (12). Due to the equivalence between the equation
set consisting of (9), (10) and (12) and the equation set (6), it is

concluded that ðln

i ,mn

i , _y
n

i Þ is also a solution to the KKT condition (6).

The KKT condition (6) gives a sufficient and necessary condition to
the constrained quadratic programming problem (5) [32], so

½ _y
nT

1 , _y
nT

2 , . . . , _y
nT

k �
T is the optimal solution to the problem (5). This

completes the proof. &
5. Simulation results

In this section, the robot arm Puma 560 [36] is used as a testbed
for the effectiveness of our method. The Puma 560 is a 6-DOF
manipulator. The end-effector of the robot arm can reach any position
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at a given orientation within its workspace. In the following simula-
tions, only the position control problem in a three-dimensional space
is considered, so the Puma 560 arm, which has 6-DOF, is a redundant
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In this section, the proposed recurrent neural network model
is applied to the kinematic control of multiple Puma 560 manip-
ulators. Two simulations are performed: one studies cooperative
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Fig. 3. Evolutions of position errors and velocity errors
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are considered, so n¼3. Each Puma 560 manipulator has 6 DOF
(m¼6), and therefore for the two simulations, the degree of
redundancy are 6 and 9, respectively.

5.1. Payload transport with two manipulators

In this simulation example, we consider the problem of
moving a payload along a square trajectory with a pair of
manipulators. The D-H parameters of the two manipulators are
summarized in Table 1. The bases of manipulator 1 and manip-
ulator 2 locate at [�0.7, 0, 0] m and [0.7, 0, 0] m in the Cartesian
space, respectively. The payload, centered at [0, 0, 0] m, has two
handles at [�0.1, 0, 0] m and [0.1, 0, 0] m, which will be held by
manipulator 1 and manipulator 2 for the movement. The desired
motion of the reference point (the center of the payload) is from
[0, 0.3, �0.3] m to [0, 0.3, 0.3] m, from [0, 0.3, 0.3] m to [0, �0.3,
0.3] m, from [0, �0.3, 0.3] m to [0, �0.3, �0.3] m, and from [0,
�0.3, �0.3] m back to [0, 0.3, �0.3] m consecutively along
straight lines with a constant speed 0.05 m/s. As to the neural
network parameters, we choose E1 ¼ E2 ¼ 10�3 and the upper and
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Fig. 5. Evolutions of y, l, _y with time for the manipu
lower limits of the joint velocity are set to be Zþ ¼ ½1;1,1;1,1;1�T

and Z� ¼�Zþ . Fig. 1 illustrates motion trajectories of the two
Puma 560 manipulators. The corresponding profiles for y, l and _y
are shown in Fig. 2. Note that the desired trajectory is a square,
which has a sharp turn at each corner, and hence l and _y for both
manipulators have a sharp change in values at the time 12 s, 24 s
and 36 s when the end-effector crosses the corners. To evaluate
the control accuracy, the difference between the real position rr

and the desired position rd of the reference point is used to
measure the position error ep and the difference between the real
velocity vr and the desired velocity vd of the reference point is
used to measure the velocity error ev. That is, ep ¼ rr�rd and
ev ¼ vr�vd. According to the problem formulation, the real posi-
tion of the reference point locates at the midpoint of the two end-
effector positions and therefore the real velocity is the average of the
two end-effector velocities, i.e., rr ¼ ðr1þr2Þ=2 and vr ¼ ðv1þv2Þ=2,
where r1, r2, v1, and v2 represent the end-effector position of
manipulator 1, the end-effector position of manipulator 2, the
end-effector velocity of manipulator 1, and the end-effector velocity
of manipulator 2, respectively. The evolution of the position error
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along x-axis (epx), y-axis (epy), z-axis (epz) and the evolution of the
velocity error along x-axis (evx), y-axis (evy), z-axis (evz) are, respec-
tively, plotted in Fig. 3. From the figure, it can be observed that the
position error converges to less than 1 mm in the duration of the
simulation after a short transient at the very beginning. The velocity
error converges very fast every time after the end-effector crosses a
corner of the desired square trajectory.

5.2. Cooperative tracking with three manipulators

In this simulation, we consider cooperative target tracking
with three identical Puma 560 manipulators. As a particular
example of cooperative task execution, potential applications
include coordinate welding [4], dextrous grasping [3], etc. Simply
speaking, the problem is to control the end-effectors of multiple
manipulators to simultaneously track a desired trajectory. In this
simulation, the bases of the three Puma 560 manipulators,
manipulator 1, manipulator 2 and manipulator 3, locate at
[�0.5, 0.5, 0] m [�0.5, �0.5, 0] m and [0.7, 0, 0] m in the
Cartesian space, respectively. The desired trajectory is a circle
centered at [0, 0, 0] m with diameter 0.4 m and a revolute angle
about y-axis for p=6 rad. The starting position of the trajectory is
[0, 0, 0.2] m and the desired tracking speed is 0.04 m/s. We choose
E1 ¼ E2 ¼ E3 ¼ 10�3, Zþ ¼ ½1;1,1;1,1;1�T and Z� ¼�Zþ for the
neural network. Fig. 4 illustrates motion trajectories of the
manipulators. From this figure, it can be observed that the end-
effectors of the three manipulators track the desired circular
trajectory simultaneously. The evolutions of y, l and _y with time
for the three manipulators are shown in Fig. 5. Since the desired
trajectory is a circle, which is smooth, the value of y, l and _y
evolves smoothly with time. From Fig. 6, it can be seen that the
position error, measured with the position difference between the
center point of the three end-effectors and the desired point, and
the velocity error, measured with the difference between the
velocity of the center point of the three end-effectors and the
desired velocity, converge to a small value very fast after a short
transient at the very beginning. During the simulation period,
both the position error and the velocity error are less than
8�10�4 m and 10�10�5 m/s, respectively, in the three axial
directions.
6. Conclusions

In this paper, the problem of multiple redundant manipulator
cooperative task execution is formulated as a quadratic program-
ming problem. A recurrent neural network is proposed to tackle
the problem. Conventionally, this problem is solved by calculating
the inverse kinematics by pseudo-inverting the Jacobian matrices.
However, this treatment, on one hand, is computationally inten-
sive and on the other hand, it generally results in a centralized
control law of manipulators. Inspired by the great success of
recurrent neural networks in realtime control of single manip-
ulators, the neural network methodology is extended to solve the
multiple redundant manipulator cooperative task execution pro-
blem. Compared with existing schemes using neural networks for
the motion control of manipulators, the proposed neural network
is composed of independent modules, each of which controls a
single manipulator and all of them together generate an emergent
collective behavior to complete the cooperative task. Theoretical
analysis proves the global stability of the neural network and the
optimality of the solution. Application orientated simulations
show that the proposed method is effective and accurate.

Some points are worth to mention about the proposed neural
network approach to multiple redundant manipulator coopera-
tive task execution.
�
 For multiple robot task execution, conventional methods first
decompose the task into subtasks and assign each subtask to a
robot [37]. Differently, this paper direct considers the problem
from a global optimization level but still obtains a decentra-
lized control law.

�
 As pointed out in Remark 1, the proposed framework admits

joint limit constraints and collision avoidance constraints by
imposing additional inequality constraints on _y.

�
 The proposed model has a comparably low architecture com-

plexity (the interconnection complexity is Oðkn2
Þ) as pointed

out in Remark 3. Modules in the neural network have no
dependence on each other and thus failure of a particular
module has no impact on other modules.

�
 The proposed neural network does not require any off-line

learning procedures and the designed parameters guarantee
the optimality of the result to the problem.

�
 The proposed model is in nature a global optimization method

and does not suffer from undesired local minima [17].
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