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Abstract Location information is useful for mobile

phones. There exists a dilemma between the relatively high

price of GPS devices and the dependence of location

information acquisition on GPS for most phones in current

stage. To tackle this problem, in this paper, we investigate

the position inference of phones without GPS according to

Bluetooth connectivity and positions of beacon phones.

With the position of GPS-equipped phones as beacons and

with the Bluetooth connections between neighbor phones

as constraints, we formulate the problem as an optimization

problem defined on the Bluetooth network. The solution to

this optimization problem is not unique. Heuristic infor-

mation is employed to improve the performance of the

result in the feasible set. Recurrent neural networks are

developed to solve the problem distributively in real time.

The convergence of the neural network and the solution

feasibility to the defined problem are both theoretically

proven. The hardware implementation of the proposed

neural network is also explored in this paper. Simulations

and comparisons with different application backgrounds

are considered. The results demonstrate the effectiveness of

the proposed method.

Keywords Feasible solution neural network � Solution

improvement neural network � Mobile phone �
Localization � Bluetooth connectivity

1 Introduction

Location information is necessary for a variety of mobile

phone–based applications [1]. For most commercial mobile

phones, the localization capability is enabled by the

embededness of GPS devices. Two drawbacks exist for the

GPS-enabled localization of mobile phones in current

stage: first, GPS fails in environments without GPS signal

coverage, such as tunnels, underground subway stations,

etc. Second, the cost of GPS devices is relatively high and

is not available for most low-cost mobile phones. For most

phones, the Bluetooth devices are available, and we

investigate in this paper a localization strategy based on the

Bluetooth in hardware and neural networks in algorithm.

Bluetooth is originally designed for exchanging data

with a low-power consumption over short distances. There

are three different transceiver modes for Bluetooth, namely

class 1, class 2 and class 3 transceivers, in which the

maximum communication range is 100, 10, and 5 m,

respectively. Actually, the maximum range of the Blue-

tooth communication also provides useful distance infor-

mation. For example, the fact that the phone A connects to

the phone B implies that their distance is within the maxi-

mum communication range. Actually, with merely the

proximity information provided by Bluetooth and positions

of some beacon phones with GPS, we are able to localize

the mobile phone without GPS with certain accuracy.
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In contrast to existing base station– based localization

strategy [2–5], which requires a dense deployment of base

stations, the proposed approach in this paper thoroughly

reduces the number of beacons. Also, compared to the

work only using inequalities to model the problem [6], this

work applies heuristic information to the problem and

receives better performance.

Different from static networks, such as wireless sensor

networks (WSNs), the Bluetooth network constructed by

phones is essentially a dynamic one due to the mobility

of phone users. Therefore, the localization algorithm is

necessary to be time efficient in order to complete the

calculation before the switching of the network topology.

Inspired by the great success of recurrent neural network

on realtime signal processing [7], robotics [8, 9], online

optimization and [10], we design a recurrent neural net-

work to tackle the problem in real time.

The remainder of this paper is organized as follows. In

Sect. 2, we formulate the problem as an optimization

problem. In Sect. 3, two neural networks are proposed to

solve the two subproblems decomposed from the original

optimization problem. In Sect. 4, the convergence of the

neural network is analyzed and it is proven to be conver-

gent to a feasible solution of the problem. In Sect. 5, the

hardware implementation of the neural network model is

explored. In Sect. 6, two applications are given, and sim-

ulations are performed to demonstrate the effectiveness of

our method. Section 7 concludes this paper.

2 Problem formulation

For the convenience of problem formulation, we first define

beacon phones and blind phones as follows:

Definition 1 Beacon phone: the mobile phone with a GPS

device.

Definition 2 Blind phone: the mobile phone without GPS.

Both beacon phone and blind phone referred in this

approach are assumed to be equipped with Bluetooth

devices. Figure 1 sketches the connectivity topology of a

phone network consisting of beacon phones and blind

phones. In the network, the positions of beacon phones are

obtained by GPS. Each Bluetooth connection link gives a

constraint to the positions of mobile phones asides the link.

In equation, we have

ðxi � xjÞTðxi � xjÞ�R2 for j 2 NðiÞ ð1aÞ

xk ¼ �xk for k 2 B ð1bÞ

where xi, xj represents the position of the ith and the jth

mobile phone, respectively, R is the maximum communi-

cation range of the Bluetooth device, NðiÞ denotes the jth

mobile phone’s neighbor set, which includes all mobile

phones connected to it via Bluetooth, B is the beacon

phone set, �xk is the GPS measured position of the beacon

phone labeled the kth.

Note that there is no explicit objective function but

inequality and equality constraints in problem (1a, 1b). The

solution to this problem is generally not unique. Every

feasible solution of (1a, 1b) corresponds to a possible

distribution of mobile phones with the given Bluetooth

connectivity restriction. Actually, among all the feasible

solutions, the one with an uniform distribution of phones in

space is more likely to happen than other feasible solutions

as it corresponds to a maximum entropy estimation of the

spatial distribution in the feasible solution set [11].

Therefore, we impose the following extra objective func-

tion to enforce this tendency,

minimize
Xn

i¼1

X

j2NðiÞ
ðxi � xjÞTðxi � xjÞ ð2aÞ

subject to ðxi � xjÞTðxi � xjÞ�R2 for j 2 NðiÞ ð2bÞ

xk ¼ �xk for k 2 B ð2cÞ

Note that minimizing
Pn

i¼1

P
j2NðiÞðxi � xjÞTðxi � xjÞ

tends to increase the difference between xi and xj for all i

and j 2 NðiÞ in the feasible solution set defined by (2b) and

(2c). It is noteworthy that the constraints in (2a, 2b, 2c) are

convex, and the objective function is also convex.

Conventionally, a constrained optimization problem can

be approximated with an unconstrained one by introducing

an extra penalty term, which represents the effect of

the constraints, to the objective function. To avoid the

violation of the inequality constraints (2b) and on the other

hand to enhance the tendency to uniformly spatial

Fig. 1 Connectivity topology of the Bluetooth-aided mobile phone

localization system
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distribution within the feasible region defined by the

inequality constraints, we relax the problem (2a, 2b, 2c)

into the following two cascaded optimization problems,

• Feasible solution problem,

ðxi � xjÞTðxi � xjÞ� ðR� dÞ2 for i 2 NðiÞ ð3aÞ

xk ¼ �xk for k 2 B ð3bÞ

where xi is randomly initialized for i 62 B. d is a positive

constant with 0 \ d� R. The small value d is used to

ensure the solution strictly in the open set formed by

(1a, 1b). Problem (3a, 3b) is a convex problem with

only inequality constraints. Denoting x0i the solution of xi

obtained by solving (3a, 3b), the second optimization

problem, which improves the estimated value of the

decision variables progressively, is expressed as follows,

• Solution Improvement problem,

minimize
Xn

i¼1

X

j2NðiÞ
ðxi � xjÞTðxi � xjÞ

� c0

Xn

i¼1

X

j2NðiÞ
log R2 � ðxi � xjÞTðxi � xjÞ
� �

ð4aÞ
xk ¼ �xk for k 2 B ð4bÞ

where c0 [ 0 is a coefficient. Note that the first term in (4a)

contributes to the equal distribution of phones in space. For

the ith phone, the corresponding term involving xi writes

2
P

j2NðiÞðxi � xjÞTðxi � xjÞ. The minimization of 2
P

j2NðiÞ

ðxi � xjÞTðxi � xjÞ in terms of xi tends to adapt xi to the

center formed by all xj for j 2 NðiÞ. It is discovered that this

type of terms plays an important role in the flocking of

birds [12] and is used in the formation control of mobile

sensor networks [13]. The second term in (4a) is essentially

a barrier term and approaches to infinitely large when the

solution tends to violate the inequality constraints given in

(1a, 1b). This term works to restrict the solution in the

feasible set.

3 The model

In this section, we present our neural network models to

solve the feasible solution problem (3a, 3b) and the solu-

tion improvement problem (4a, 4b).

3.1 Feasible solution neural network

The solution of the feasible solution problem (3a, 3b),

which has no explicit objective function, is identical to the

solution of the following optimization problem,

minimize
Xn

i¼1

X

j2NðiÞ
wijmaxfðxi � xjÞTðxi � xjÞ

� ðR� dÞ2; 0g
subject to xk ¼ �xk for k 2 B ð5Þ

where n denotes the number of all mobile phones, wij [ 0

is the weight of the connection between the ith and the jth

phone. Note that the optimization problem (5) is non-

smooth due to the presence of the function max(�). The

following recurrent neural network [6], with the switching

criteria augmented negative gradient evolution, finds a

feasible solution of the optimization problem (5),

_xi ¼� �1

X

j2NðiÞ
wijIijðxi � xjÞ

xk ¼�xk for k 2 B ð6Þ

where xi is the position estimation of the blind mobile

phone labeled i (xi 2 R
2 in 2-dimensional space), �1 [ 0 is

a scaling factor, wij is a positive weight, and Iij is an

indicator function defined as follows:

Iij ¼
1 if ðxi � xjÞTðxi � xjÞ � ðR� dÞ2 [ 0

0 if ðxi � xjÞTðxi � xjÞ � ðR� dÞ2� 0

�
ð7Þ

3.2 Solution improvement neural network

The solution improvement problem (4a, 4b) is an uncon-

strained optimization problem defined on a network. We

use the following gradient-based recurrent neural network

to solve it:

_xi ¼ ��2

X

j2NðiÞ
1þ c0

R2 � ðxi � xjÞTðxi � xjÞ

 !
ðxi � xjÞ

xk ¼ �xk for k 2 B xið0Þ ¼ x0i ð8Þ

where xi is the position estimation of the blind mobile phone

labeled i (xi 2 R
2 in 2-dimensional space), x0i is the ultimate

output of the feasible solution neural network (6), that is, the

solution of xi obtained by solving (5). The expression

xi(0) = x0i means that xi is initialized with x0i. e2 [ 0 is a scaling

factor and c0 [ 0 is a positive constant.

Remark 1 The recurrent neural network (8) is a distrib-

uted one since the update of xi in (8) only depends on xj

for j 2 NðiÞ, that is, the position estimations of the

neighbor phones. Therefore, communication only happens

between neighbor phones with direct Bluetooth connec-

tions. No routing or cross-hop communication is required

for the implementation of the neural network. This

structure of the neural network thoroughly reduces the

communication burden and makes the neural network

scalable to a network with a large number of phones

involved.
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Remark 2 The solution improvement neural network (8)

is initialized with the output of the feasible solution neural

network (6) cascaded to it, and the ultimate output of the

solution improvement neural network is used as the loca-

tion estimation of the phones.

4 Convergence analysis

As the ultimate output of the solution improvement neural

network (8) is used as the location estimation of the

phones; in this section, we investigate the convergence of

the neural network (8) and the solution feasibility to the

constraints (1a). Before stating the main result, we first

give the following lemma:

Lemma 1 [6] The feasible solution neural network (6),

with �1 [ 0, wij [ 0 for all possible i and j, asymptotically

converges to a feasible solution x0i (for all i in the blind

mobile phone set) of problem (3a, 3b).

With this lemma, we are able to prove the following

main result:

Theorem 1 The solution improvement neural network (8)

with �2 [ 0, c0 [ 0, initialized with x0i, which is the ulti-

mate output of the feasible solution neural network (6),

stays in the open set constructed by (1a, 1b).

Proof We construct the following function to analyze the

dynamic of the recurrent neural network (8):

V ¼
Xn

i¼1

X

j2NðiÞ
ðxi � xjÞTðxi � xjÞ

� c0

Xn

i¼1

X

j2NðiÞ
log R2 � ðxi � xjÞTðxi � xjÞ
� �

ð9Þ

The time derivative of V along the trajectory of the solution

improvement neural network (8) has the following form:

_V¼2
Xn

i¼1

X

j2NðiÞ
ðxi�xjÞTð _xi� _xjÞ

þ2c0

Xn

i¼1

X

j2NðiÞ

ðxi�xjÞTð _xi� _xjÞ
R2�ðxi�xjÞTðxi�xjÞ

¼2
Xn

i¼1

X

j2NðiÞ
1þ c0

R2�ðxi�xjÞTðxi�xjÞ

 !
ðxi�xjÞTð _xi� _xjÞ

¼2
Xn

i¼1

X

j2NðiÞ
1þ c0

R2�ðxi�xjÞTðxi�xjÞ

 !
ðxi�xjÞT _xi

�2
Xn

i¼1

X

j2NðiÞ
1þ c0

R2�ðxi�xjÞTðxi�xjÞ

 !
ðxi�xjÞT _xj

ð10Þ

We have 2
Pn

i¼1

P
j2NðiÞ 1þ c0

R2�ðxi�xjÞT ðxi�xjÞ

� �
ðxi�xjÞT

_xj¼2
Pn

j¼1

P
i2NðjÞ 1þ c0

R2�ðxi�xjÞT ðxi�xjÞ

� �
ðxi�xjÞT _xj by notic-

ing that the summation in this term in nature happens

among all neighboring links. Therefore, the expression (10)

further yields,

_V¼2
Xn

i¼1

_xT
i

X

j2NðiÞ
1þ c0

R2�ðxi�xjÞTðxi�xjÞ

 !
ðxi�xjÞ

�2
Xn

j¼1

_xT
j

X

i2NðjÞ
1þ c0

R2�ðxi�xjÞTðxi�xjÞ

 !
ðxi�xjÞ

¼�2�2

Xn

i¼1

X

j2NðiÞ
1þ c0

R2�ðxi�xjÞTðxi�xjÞ

 !
ðxi�xjÞ

������

������

������

������

2

�2�2

Xn

j¼1

X

i2NðjÞ
1þ c0

R2�ðxi�xjÞTðxi�xjÞ

 !
ðxi�xjÞ

������

������

������

������

2

¼�4�2

Xn

i¼1

X

j2NðiÞ
1þ c0

R2�ðxi�xjÞTðxi�xjÞ

 !
ðxi�xjÞ

������

������

������

������

2

�0 ð11Þ

Note the relation that
Pn

j¼1

P
i2NðjÞ 1þ c0

R2�ðxi�

����
��� xjÞTðxi�

xjÞÞðxi�xjÞjj2¼
Pn

i¼1

P
j2NðiÞ 1þ c0

R2�ðxi�xjÞT ðxi�

����
��� xjÞÞðxi�

xjÞjj2; which is obtained by switching the notation i and j

inside, is utilized in the above derivation. As _V�0, we

conclude that V(t) B V0 = V(0) for t C 0. Since the solution

improvement neural network is initialized with x0i (the

ultimate output of the feasible solution neural network) for

all i, the value of V0 therefore is a function of x0i for all i with

finite value. According to Lemma 1, we have

ðx0i � x0jÞ
Tðx0i � x0jÞ� ðR� dÞ2\R2 for i 2 NðiÞ ð12Þ

meaning that the initial value of the state variables is in the open

set constructed by (1a, 1b). Also note that the function V

approaches infinitely large when (xi - xj)
T(xi - xj) approa-

ches R from below for j 2 NðiÞ, which implies that

(xi - xj)
T(xi - xj) \ R2 holds all the time for j 2 NðiÞ after

initialized with such an inequality satisfied. Otherwise, if there

exists time t1, at which (xi(t1) - xj(t1))T(xi(t1) - xj(t1))[ R2,

then there must be a time 0 \ t2 \ t1 with the equality relation

(xi(t2) - xj(t2))T(xi(t2) - xj(t2)) = R2 according to the inter-

mediate value theorem. However, (xi(t2) - xj(t2))T(xi(t2) -

xj(t2)) = R2 results in the infinitely large value of V(t2), which

contradicts the fact V(t2) B V0. This contradiction in turn

validates the claim (xi - xj)
T(xi - xj) \ R2 holds all the time

for j 2 NðiÞ after initialization. This completes the proof. h
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5 Hardware implementation of the neural network

The proposed neural network can either be implemented

on microprocessors in series for the update of position

estimation by discretizing the dynamic equations or be

implemented in analog circuits in parallel. In this section,

we study the parallel implementation of the proposed

model. Particularly, we focus on the analog circuit

implementation of the solution improvement neural

network.

In the solution improvement neural network (8), the

state variable xi is associated with the mobile phone

labeled i, which is in correspondence with the ith neuron

in the network. Each neuron in the network only interacts

with its neighbor, and all the neurons together perform

the localization task collaboratively. Different from

conventional iterative methods, which may only be

implementable in series, the proposed neural network

can be implemented in analog circuits and accordingly

processes signals in parallel and solve the problem in real

time. In the network, summators, multipliers, dividers,

and integrators are employed for the implementation of

neurons in the network. As an example, the hardware

implementation of the neural module associated with the

blind mobile phone labeled j, with j1; j2; . . .; jk denoting

the neighbor phones (either blind phones or beacon

phones), is shown in Fig. 2. The neuron gets inputs from

its neighbor phones and outputs its own position esti-

mation. Equipped with such an analog implementation of

neurons, mobile phones are able to localize themselves

with proximity information provided by the Bluetooth

devices.

6 Simulations

In this section, two application-oriented simulations are

performed to show the effectiveness of the proposed

method.

6.1 Localization in tunnels

The Zhujiang Tunnel (as shown in Fig. 3) is a highway

tunnel under the Pearl River in Guangzhou, China, with a

total length of 1,238.5 m and a traffic of 10,000 vehicles

per day on average. GPS signal is not available in the

tunnel, and therefore, drivers are not able to localize the

vehicle inside. The Bluetooth-aided mobile phone locali-

zation strategy provides an option for rough localization of

vehicles. As the tunnel can be simplified into a straight line

(see Fig. 3), the problem therefore is a one-dimensional

localization problem, and we perform simulation experi-

ment to validate the effectiveness of the proposed strategy

for this particular application.

Suppose there are 20 vehicles and their positions are

randomly distributed along the tunnel direction in the

simulation and there are only two beacon phones, each of

these locates at an end of the tunnel. The Bluetooth devices

work in class 3 transceiver mode with a maximum range of

100 m. For simulation convenience, we set the coordinates

of the two beacon phones at 0 and 1,238.5 m, respectively.

The values of xi for all i are randomly initialized. In the

simulation, the neural network parameters are chosen as

�1 ¼ 105, �2 ¼ 20� 105, c0 = 5, d = 5 and wij = 1 for all

possible pairs of i and j. Figure 4 depicts the estimation

results obtained by the feasible solution neural network and

the results obtained by the solution improvement neural

Fig. 2 Analog circuit architecture of the jth neuron in the proposed

neural network, where the lower figure shows the implementation of

the function f ð�Þ; j1; j2; . . .; jk denote the neighbor phones of the jth

one

Fig. 3 The Zhujiang Tunnel under the Pearl River in Guangzhou,

China
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network. From Fig. 4, we can see that both the feasible

solution neural network and the solution improvement

neural network generate solutions satisfying the constraint

that neighboring phones are within the range of Bluetooth

connections. The transient of position estimations by the

feasible solution neural network and the transient of posi-

tion estimations by the solution improvement neural net-

work are plotted in Figs. 5 and 6, respectively. Compared

with the feasible solution neural network, the results

obtained by the solution improvement neural network are

more evenly distributed along the tunnel direction. It is

noteworthy that there exists interlacing between the true

positions and the estimated positions by the feasible solu-

tion neural network, while the solution improvement neural

network tends to unlace them, and the estimated position

by the solution improvement neural network is closer to the

true position than the solution obtained by the feasible

solution neural network as can be observed in Fig. 4.

6.2 Localization in supermarkets

In this section, we explore the Bluetooth-aided localization

problem in supermarkets. In the simulation, the whole floor

of the supermarket is assumed to be a 60 9 60 square
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Fig. 6 The output of the

solution improvement neural

network for the example in

tunnel environments

0 200 400 600 800 1000 1200

x/meters

Final Estimation by SINN
Final Estimation by FSNN
true positions of blind phones
beacon phones

Fig. 4 The estimated positions by the solution improvement neural

network (abbreviated as SINN in the figure) versus the estimated

positions by the feasible solution neural network (abbreviated as

FSNN in the figure) for the example in tunnel environments
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Fig. 5 The output of the feasible solution neural network for the
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meters area, and 110 customers with blind phones distrib-

ute in this area randomly, and 9 beacon phones are

deployed along the perimeter and at the center, with rela-

tive coordinates [0, 0], [30, 0], [60, 0], [60, 30], [60, 60],

[30, 60], [0, 60], [0, 30], [30, 30] respectively, as shown

in Fig. 7. The Bluetooth devices work in class 2 mode and

have an maximum range of R = 10 m. The scaling factors

are chosen as �1 ¼ �2 ¼ 105, the parameter d = 0.5, the

connection weight wij equals 5 for connections with a

beacon phones and 1 otherwise for the neural network, and

the weighting parameter c0 is chosen as 1. Figures 8 and 9

show the estimated positions of blind phones using the final

output of the feasible solution neural network and the

solution improvement neural network, respectively. In the

figures, the green line connects the real position and

the estimated one and therefore its length measures the esti-

mation error. By comparing the two figures, we can see that

the total length of the green lines in Fig. 9 is clearly shorter

than that in Fig. 8, which implies the solution improvement

neural network indeed improves the estimation. It is

noteworthy that the feasible solution neural network con-

verges to a solution in the feasible solution set, which in

general includes infinite number of feasible solutions, all

feasible solutions are possibly being the solution. In Fig. 8,

we can see the blind phone locating in the lower left gets an

estimation located even further away from the lower left

beacon phone under the condition that this blind phone
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Fig. 9 The estimated positions by the solution improvement neural

network (abbreviated as SINN in the figure) in the simulation example

in supermarket environments
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only has a single neighbor, which is the lower left beacon

phone (see Fig. 7). In such a scenario with a single phone

as the neighbor, it is more reasonable to make the esti-

mation that the position of the neighboring beacon phone is

the estimated position. Actually, this is definitely the esti-

mation made by the solution improvement network as

shown in Fig. 9, which shows that the lower left blind

phone connects to the lower left beacon phone with a green

line (the corresponding red cross indicating the associate

estimated position is covered by the star sign indicating

the beacon phone in the figure). The time histories of

the feasible solution neural network and the solution

improvement neural network along both x-axis and y-axis

are plotted in Figs. 10, 11, 12 and 13. It can be observed

that the outputs converge for both the feasible solution

neural network and the solution improvement neural

network.

7 Conclusions

In this paper, we proposed a recurrent neural network–

based method for Bluetooth-aided mobile phone rough

localization. The problem is decomposed into subprob-

lems, namely the feasible solution problem and the solution

improvement problem. Correspondingly, a feasible solu-

tion neural network and a solution improvement neural

network are proposed to solve the two problems, respec-

tively. The convergence of the proposed neural network
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Fig. 13 The y-directional output of the solution improvement neural

network in the simulation example in supermarket environments
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Fig. 10 The x-directional output of the feasible solution neural

network in the simulation example in supermarket environments
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Fig. 11 The y-directional output of the feasible solution neural

network in the simulation example in supermarket environments
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Fig. 12 The x-directional output of the solution improvement neural

network in the simulation example in supermarket environments
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and the feasibility of the neural solution are proven in

theory. The architecture of the circuit implementation of

the neural network is given. Finally, application-oriented

simulations are performed to demonstrate effectiveness of

the method.

Acknowledgments The authors would like to acknowledge the

constant motivation by the following motto by Franklin D. Roosevelt

‘‘The only limit to our realization of tomorrow will be our doubts of

today.’’

References

1. Sohn T, Li KA, Lee G, Smith IE, Scott J, Griswold WG (2005)

Place-its: a study of location-based reminders on mobile phones.

In: Beigl M, Intille SS, Rekimoto J, Tokuda H (eds) Ubicomp.

Springer, Berlin, pp 232–250

2. Hay S, Harle R (2009) Bluetooth tracking without discoverabil-

ity. In: Choudhury T, Quigley A, Strang T, Suginuma K (eds)

Location and context awareness, vol 5561 of lecture notes in

computer science, Springer, Berlin/Heidelberg, pp 120–137

3. Pei L, Chen R, Liu J, Tenhunen T, Kuusniemi H, Chen Y (2010)

Inquiry-based bluetooth indoor positioning via rssi probability

distributions. In: Proceedings of the 2010 second international

conference on advances in satellite and space communications,

SPACOMM ’10, Washington, DC, USA. IEEE Computer Society,

pp 151–156

4. Ergut S, Rao R (2008) Localization via multipath strengths in a

cdma2000 cellular network using neural networks. In: 2008

IJCNN, pp 4066–4069

5. Ergut S, Rao R, Dural O, Sahinoglu Z (2008) Localization via

tdoa in a uwb sensor network using neural networks. In: 2008

IEEE international conference on communications, pp 2398–

2403

6. Li S, Chen S, Lou Y, Lu B, Liang Y (2012) A recurrent neural

network for inter-localization of mobile phones. In: IJCNN 2012

7. Skowronski MD, Harris JG (2007) Noise-robust automatic

speech recognition using a predictive echo state network. IEEE

Trans Audio Speech Lang Process 15(5):1724–1730

8. Li S, Meng MQH, Chen W (2007) Sp-nn: a novel neural network

approach for path planning. In: IEEE international conference on

robotics and biomimetics, 2007, pp 1355 –1360

9. Ogata T, Nishide T, Kozima H, Komatani K, Okuno HG (2010)

Inter-modality mapping in robot with recurrent neural network.

Pattern Recognit Lett 31(12):1560–1569

10. Smith KA (1999) Neural networks for combinatorial optimiza-

tion: a review of more than a decade of research. INFORMS J

Comput 11:15–34

11. Wu N (1997) The maximum entropy method (Springer series in

information sciences). Springer, Berlin
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