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Sequential Decision-Making

Sequential decision-making (SDM) concerns an agent
making a sequence of actions based on its behavior in the
environment.

Deep reinforcement learning (DRL) achieves
tremendous success on sequential decision-making
problems using deep neural networks (Mnih et al., 2015).
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Challenge: Montezuma’s Revenge

The avatar: climbs down the ladder, jumps over a rotating
skull, picks up the key (+100), goes back and uses the
key to open the right door (+300).

Vanilla DQN achieves 0 score (Mnih et al., 2015).
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Challenge: Montezuma’s Revenge

Problem: long horizon sequential actions, sparse and
delayed reward.

poor data efficiency.
lack of interpretability.
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Our Solution

Solution: task decomposition

Symbolic planning: subtasks scheduling (high-level plan).

DRL: subtask learning (low-level control).

Meta-learner: subtask evaluation.

Goal

Symbolic planning drives learning, improving task-level
interpretablility.

DRL learns feasible subtasks, improving data-efficiency.
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Background: Symbolic Planning with Action
Language

Action language (Gelfond & Lifschitz, 1998): a formal,
declarative, logic-based language that describes dynamic
domains.

Dynamic domains can be represented as a transition
system.
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Action Language BC

Action Language BC (Lee et al., 2013) is a language that
describes the transition system using a set of causal laws.

dynamic laws describe transition of states

move(x , y1, y2) causes on(x , y2) if on(x , y1).

static laws describe value of fluents inside a state

intower(x , y2) if intower(x , y1), on(y1, y2).
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Background: Reinforcement Learning

Reinforcement learning is defined on a Markov Decision
Process (S,A,Pa

ss′ , r , γ). To achieve optimal behavior, a
policy π : S ×A 7→ [0, 1] is learned.

An option is defined on the tuple (I , π, β), which enables
the decision-making to have a hierarchical structure:

the initiation set I ⊆ S,
policy π: S ×A 7→ [0, 1],
probabilistic termination condition β: S 7→ [0, 1].
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SDRL: Symbolic Deep Reinforcement Learning

Symbolic Planner: orchestrates sequence of subtasks
using high-level symbolic plan.

Controller: uses DRL approaches to learn the subpolicy
for each subtask with intrinsic rewards.

Meta-Controller: measures learning performance of
subtasks, updates intrinsic goal to enable reward-driven
plan improvement.
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Symbolic Planner
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Symbolic Planner: Planning with Intrinsic Goal

Intrinsic goal: a linear constraint on plan quality
quality ≥ quality(Πt) where Πt is the plan at episode t.

Plan quality: a utility function

quality(Πt) =
∑

〈si−1,gi−1,si 〉∈Πt

ρgi−1(si−1)

where ρgi is the gain reward for subtask gi .

Symbolic planner: generates a new plan that

explores new subtasks,
exploits more rewarding subtasks.
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From Symbolic Transition to Subtask

Assumption: given the set S of symbolic states and S̃ of
sensory input, we assumed there is an Oracle for symbol
grounding: F : S × S̃ 7→ {t, f}.
Given F and a pair of symbolic states s, s ′ ∈ S:

initiation set I = {s̃ ∈ S̃ : F(s, s̃) = t},
π : S̃ 7→ Ã is the subpolicy for the corresponding subtask,
β is the termination condition such that

β(s̃ ′) =

{
1 F(s ′, s̃ ′) = t, for s̃ ′ ∈ S̃,
0 otherwise.
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Controller
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Controllers: DRL with Intrinsic Reward

Intrinsic reward: pseudo-reward crafted by the human.

Given a subtask defined on (I , π, β), intrinsic reward

ri (s̃ ′) =

{
φ β(s̃ ′) = 1
r otherwise

where φ is a positive constant encouraging achieving
subtasks and r is the reward from the environment at
state s̃ ′.
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Meta-Controller
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Meta-Controller: Evaluation with Extrinsic Reward

Extrinsic rewards: re(s, g) = f (ε) where ε can measure
the competence of the learned subpolicy for each subtask.

For example, let ε be the success ratio, f can be defined
as

f (ε) =

{
−ψ ε < threshold
r(s, g) ε ≥ threshold

ψ is a positive constant to punish selecting unlearnable
subtasks,
r(s, g) is the cumulative environmental reward by following
the subtask g .
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Experimental Results I.
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Experimental Results II.

Baseline: Kulkarni et. al, Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and

Intrinsic Motivation, NIPS’2016.
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Conclusion

We present a SDRL framework features:

High-level symbolic planning based on intrinsic goal
Low-level policy control with DRL.
Subtask learning evaluation by a meta-learner.

This is the first work on integrating symbolic planning
with DRL that achieves both task-level interpretability
and data-efficiency for decision-making.

Future work.
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