SDRL: Interpretable and Data-efficient Deep Reinforcement Learning Leveraging Symbolic Planning

Daoming Lyu¹, Fangkai Yang², Bo Liu¹, Steven Gustafson³ ¹Auburn University, Auburn, AL; ²NVIDIA, Redmond, WA; ³Maana Inc., Bellevue, WA

Problem

- Sequential decision-making with long horizon action sequence and sparse reward suffers from:
 - Poor data efficiency,
 - Lack of interpretability.
- Challenge: Montezuma's Revenge

- The avatar: climbs down the ladder, jumps over a rotating skull, picks up a key (+100), goes back and uses the key to open the right door (+300).
- Vanilla DQN achieves 0 score (Mnih et al., 2015).

SDRL: Symbolic Deep Reinforcement Learning

Goal:

- Symbolic planning drives learning, improving task-level interpretablility.
- DRL learns feasible subtasks, improving data-efficiency.

Task decomposition.

Experimental Results

Symbolic representation and predefined subtasks

% object declaration

No.	subtask	policy learned	in optimal plan
1	MP to LRL, no key	\checkmark	\checkmark
2	LRL to LLL, no key	\checkmark	\checkmark
3	LLL to key, no key	\checkmark	\checkmark
4	key to LLL, with key	\checkmark	\checkmark
5	LLL to LRL, with or without key	\checkmark	\checkmark
6	LRL to MP, with or without key	\checkmark	\checkmark
7	MP to RD, with key	\checkmark	\checkmark
8	LRL to LS, with or without key	\checkmark	
9	LS to key, with or without key	\checkmark	
10	MP to RD, no key	\checkmark	
11	LRL to key, with or without key		
12	key to LRL, with key		
13	LRL to RD, with key		

Symbolic Planner: high-level symbolic planning based on intrinsic goal.

- Intrinsic goal: a linear constraint on plan quality quality $\geq quality(\Pi_t)$, where Π_t is the plan at episode t.
- Plan quality: a utility function that sums up the gain rewards of subtasks in a plan.
- Mapping from symbolic transition to subtask.
- **Controller**: low-level policy control with DRL.
 - Intrinsic reward: pseudo-reward crafted by the human.
- Meta-Controller: subtask learning evaluation.
 - Extrinsic reward: a function about ϵ where ϵ is a criterion that measures the competence of the learned subpolicy for each subtask.
 - ϵ : success ratio (in our case).
 - Learnable subtask and unlearnable subtask.

Final solution and learning curves

Reference

- Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J.(2016). Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In *Advances in Neural Information Processing Systems*, pages 3675–3683. (our baseline)
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533.
- Yang, F., Lyu, D., Liu, B., and Gustafson, S. (2018). Peorl: Integrating symbolic planning and hierarchical reinforcement learning for robust decision-making. In *International Joint Conference of Artificial Intelli*gence (IJCAI).

Conclusion

- We present the SDRL framework, and it is the first work on integrating symbolic planning with DRL that achieves both task-level interpretability and data-efficiency for decision-making.
- Future work will investigate on the transferability, and integration with automatic option discovery.