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Challenges

Risk-sensitive Reinforcement Learning: How to manage risk (e.g., vari-
ance of the cumulative reward) for reinforcement learning?

Abstract:
= Computing an unbiased estimation of policy gradients with variance

related risk criteria usually requires double sampling or
multi-time-scale stochastic approximation algorithm.
= Sample complexity of existing methods is difficult to analyze.
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Our approach: Mean-variance objective function based on its Legendre-
Fenchel dual.

Problem Setup

Double sampling issue:

= Mean-variance optimization
max J(0) =E.|R| st Var,(R)<(
= Lagrangian relaxation procedure
IA0) =Er,[R] — \(Vary,(R) — ()
=J(0) = A(M(0) = J(0) = ¢)
* Computing stochastic gradient (M (0) = E, [ R’
Vodr(0;) =V J(0;) — AVyVar(R)
=V J (6;) — A(VoM(0) — 2. (0)V ) (0))
= We have no unbiased estimation of J(0)V,J(6) with a single trajectory.

Multi-time-scale method!2!:
Op+1 =0k + ax(R"(61) — Mg’ (Vi — b) ((R*(0k))* — 2R"(61) Ji) ) 2" (6%)
Jer1 =Jp + Bu(R(0;) — Jp)
Voor =V + B (R (60,)) — T2 — Vi)

Red terms make it impossible to analyze sample complexity by existing ap-
proaches!1].

Objective: Risk-sensitive reinforcement learning method with single-time-
scale stepsize and provable sample complexity analysis.

Block Coordinate Reformulation

Reformulation using Legendre-Fenchel dual:

F\(0) = (J(e) + %)2 Vi)

— max <2y(J(6’) | 21)\) y2) — M (6)

Y

New optimization problem (standard nonconvex coordinate ascent

problem):

1

X a0, y) = 2y(J(0) 2>\>

y° — M(0).
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Mean-Variance Policy Gradient (MVP)

Algorithm 1 Mean-Variance Policy Gradient (MVP)

1. Input: Stepsizes {3} and {3/}, and number of iterations N
Option I: {#?} and {5/} satisfy the Robbins-Monro condition
Option II: 3¢ and B/ are set to be constants

2. forepisodet=1,..., N do

3. Generate the initial state s; ~ P,

4. while s, # s* do

5; Take the action ay ~ 7y, (a|sx) and observe the reward r; and next

state spiq
6:  end while
7. Update the parameters

wt(et) — Z V@ In W@t(ak‘sk)
k=1

1
Yer1 =Yt + BF (2315 | 3 2%)

Orr1 =0 + @9 (QytJrlRt — (Rt)Z) wi(0;)

3. end for

9. Output zy:

Option I: Set IN =TN = [QN,yN]T

Option Il: Set 2y = x. = [0.,v.]", where z is uniformly drawn from
{1,2,...,N}

Theoretical Analysis of MVP

Finite sample analysis:
Theorem. Let the output of the MVP Algorithm be z following Option Il. If
8%, {3/} are constants and satisfies 28" > L(B">)? fort = 1,--- | N, we

have
v |

where fi = max, fi(z).

fi = falz) + N(G)C

N(B = (B

VAEVIE) <

Corollary. The convergence rate of the MVP algorithm with constant stepsizes
O(1/v/N) implies that the sample complexity N = O(1/£?) in order to find
e-stationary solution.

Asymptotic convergence:

Theorem. Let {xt = (0, yt)} be the sequence of the outputs generated by
MVP algorithm with Option I. If {3°} and {3{} are time-diminishing real pos-
itive sequences satisfying the Robbins-Monro condition, i.e., >, 8¢ = oo,
% (89 < 00, o, B = oo, and X, (BY) < oo, then MVP Algorithm will
converge such that

Vi@)|2] = 0.

lim E|
{—00
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Finite-Sample Analysis of Nonconvex Block

Stochastic Gradient (BSG) Algorithms

MVP algorithm belongs to the family of nonconvex BSG algorithm

objective function:

min f(x) = E¢[F(x, )]

rER"

Theorem. Let the output of the nonconvex BSG algorithm be zy = z.. If
stepsizes satisfy 25™" > L(B")%fort = 1,--- , N, then we have

Y v) = [+ S (B
S (B = S(Br)2)
where f* = min, f(z). C; = (1 — % 1) E?:1L\/Zj<i(G2+O_2) +

b (AG + 502) . where G is the gradient bound, L is the Lipschitz constants,
o Is the variance bound.

v ian)g <L

Corollary. The convergence rate of the nonconvex BSG algorithm with con-
stant stepsizes O(1/+/N) implies that the sample complexity N = O(1/&?)
in order to find s-stationary solution.

Experimental Study
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Figure: Empirical results of the distributions of the return (cumulative rewards) random
variable. Note that markers only indicate different methods.

Portfolio Management American-style Option Optimal Stopping

Mean Std Mean Std Mean Std
MVP 29.754 0.325 0.2478 0.00482 -1.4767 0.00456
PG 29.170 1.177 0.2477 0.00922 -1.4769 0.00754
Tamar 28.575 0.857 0.2240 0.00694 -2.8553/0.00415
SGA 29.679 0.658 0.2470 0.00679 -1.4805 0.00583
RCPG 29.340 0.789 0.2447 0.00819 -1.4872 0.00721

Table: Performance Comparison among Algorithms
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