A Block Coordinate Ascent Algorithm for Mean-Variance Optimization

Mohammad Ghavamzadeh⁴ Yinlam Chow⁵ Bo Liu *2 Yangyang Xu³ Tengyang Xie*1 Daoming Lyu² Daesub Yoon⁶

¹UMass Amherst

²Auburn University

³Rensselaer Polytechnic Institute

⁴Facebook Al Research

⁵Google DeepMind

equal contribution)

Challenges

Risk-sensitive Reinforcement Learning: How to manage risk (e.g., variance of the cumulative reward) for reinforcement learning?

Abstract:

- Computing an unbiased estimation of policy gradients with variance related risk criteria usually requires double sampling or multi-time-scale stochastic approximation algorithm.
- Sample complexity of existing methods is difficult to analyze.

Our approach: Mean-variance objective function based on its Legendre-Fenchel dual.

Problem Setup

Double sampling issue:

Mean-variance optimization

$$\max_{\theta} \quad J(\theta) = \mathbb{E}_{\pi_{\theta}}[R] \quad \text{s.t.} \quad \mathsf{Var}_{\pi_{\theta}}(R) \leq \zeta$$

Lagrangian relaxation procedure

$$J_{\lambda}(\theta) \coloneqq \mathbb{E}_{\pi_{\theta}}[R] - \lambda \left(\mathsf{Var}_{\pi_{\theta}}(R) - \zeta \right)$$

= $J(\theta) - \lambda \left(M(\theta) - J(\theta)^2 - \zeta \right)$

• Computing stochastic gradient ($M(\theta) \coloneqq \mathbb{E}_{\pi_{\theta}}[R^2]$

$$\nabla_{\theta} J_{\lambda}(\theta_{t}) = \nabla_{\theta} J(\theta_{t}) - \lambda \nabla_{\theta} \text{Var}(R)$$
$$= \nabla_{\theta} J(\theta_{t}) - \lambda \left(\nabla_{\theta} M(\theta) - 2J(\theta) \nabla_{\theta} J(\theta) \right)$$

• We have **no** unbiased estimation of $J(\theta)\nabla_{\theta}J(\theta)$ with a single trajectory.

Multi-time-scale method^[2]:

$$\theta_{k+1} = \theta_k + \alpha_k \left(R^k(\theta_k) - \lambda g' \left(\widetilde{V}_k - b \right) \left((R^k(\theta_k))^2 - 2R^k(\theta_k) \widetilde{J}_k \right) \right) z^k(\theta_k)$$

$$\widetilde{J}_{k+1} = \widetilde{J}_k + \beta_k \left(R^k(\theta_k) - \widetilde{J}_k \right)$$

$$\widetilde{V}_{k+1} = \widetilde{V}_k + \beta_k \left((R^k(\theta_k))^2 - \widetilde{J}_k^2 - \widetilde{V}_k \right)$$

Red terms make it impossible to analyze sample complexity by existing approaches^[1].

Objective: Risk-sensitive reinforcement learning method with *single-time*scale stepsize and provable sample complexity analysis.

Block Coordinate Reformulation

Reformulation using Legendre-Fenchel dual:

$$F_{\lambda}(\theta) \coloneqq \left(J(\theta) + \frac{1}{2\lambda}\right)^{2} - M(\theta)$$

$$= \max_{y} \left(2y\left(J(\theta) + \frac{1}{2\lambda}\right) - y^{2}\right) - M(\theta)$$

New optimization problem (standard nonconvex coordinate ascent problem):

$$\max_{\theta,y} \quad \widehat{f}_{\lambda}(\theta,y) \coloneqq 2y \Big(J(\theta) + \frac{1}{2\lambda} \Big) - y^2 - M(\theta).$$

Mean-Variance Policy Gradient (MVP)

Algorithm 1 Mean-Variance Policy Gradient (MVP)

- 1: **Input:** Stepsizes $\{\beta_t^{\theta}\}$ and $\{\beta_t^y\}$, and number of iterations N**Option I:** $\{\beta_t^{\theta}\}$ and $\{\beta_t^y\}$ satisfy the Robbins-Monro condition **Option II:** β_t^{θ} and β_t^y are set to be constants
- 2: for episode $t = 1, \dots, N$ do
- Generate the initial state $s_1 \sim P_0$
- while $s_k \neq s^*$ do
- Take the action $a_k \sim \pi_{\theta_t}(a|s_k)$ and observe the reward r_k and next state s_{k+1}
 - end while
- Update the parameters

$$R_t = \sum_{k=1}^{\tau_t} r_k$$

$$\omega_t(\theta_t) = \sum_{k=1}^{\tau_t} \nabla_{\theta} \ln \pi_{\theta_t}(a_k|s_k)$$

$$y_{t+1} = y_t + \beta_t^y \left(2R_t + \frac{1}{\lambda} - 2y_t\right)$$

$$\theta_{t+1} = \theta_t + \beta_t^\theta \left(2y_{t+1}R_t - (R_t)^2\right) \omega_t(\theta_t)$$

- 8: end for
- 9: Output \bar{x}_N :

 $\{1, 2, \dots, N\}$

Option I: Set $\bar{x}_N = x_N = [\theta_N, y_N]^\top$ **Option II:** Set $\bar{x}_N = x_z = [\theta_z, y_z]^{\top}$, where z is uniformly drawn from

Theoretical Analysis of MVP

Finite sample analysis:

Theorem. Let the output of the MVP Algorithm be \bar{x}_N following Option II. If $\{\beta_t^{\theta}\}, \{\beta_t^y\}$ are constants and satisfies $2\beta_t^{\min} > L(\beta_t^{\max})^2$ for $t=1,\cdots,N$, we have

$$\mathbb{E}\left[\|\nabla \widehat{f}_{\lambda}(\bar{x}_N)\|_2^2\right] \leq \frac{\widehat{f}_{\lambda}^* - \widehat{f}_{\lambda}(x_1) + N(\beta_t^{\max})^2 C}{N(\beta_t^{\min} - \frac{L}{2}(\beta_t^{\max})^2)}$$

where $f_{\lambda}^* = \max_x f_{\lambda}(x)$.

Corollary. The convergence rate of the MVP algorithm with constant stepsizes $\mathcal{O}(1/\sqrt{N})$ implies that the sample complexity $N = \mathcal{O}(1/\varepsilon^2)$ in order to find ε -stationary solution.

Asymptotic convergence:

Theorem. Let $\{x_t = (\theta_t, y_t)\}$ be the sequence of the outputs generated by MVP algorithm with Option I. If $\{\beta_t^{\theta}\}$ and $\{\beta_t^y\}$ are time-diminishing real positive sequences satisfying the Robbins-Monro condition, i.e., $\sum_{t=1}^{\infty} \beta_t^{\theta} = \infty$, $\sum_{t=1}^{\infty} (\beta_t^{\theta})^2 < \infty$, $\sum_{t=1}^{\infty} \beta_t^y = \infty$, and $\sum_{t=1}^{\infty} (\beta_t^y)^2 < \infty$, then MVP Algorithm will converge such that

$$\lim_{t \to \infty} \mathbb{E}[\|\nabla \widehat{f}_{\lambda}(x_t)\|_2] = 0.$$

Finite-Sample Analysis of Nonconvex Block Stochastic Gradient (BSG) Algorithms

MVP algorithm belongs to the family of nonconvex BSG algorithm

objective function:
$$\min_{x \in \mathbb{R}^n} f(x) = \mathbb{E}_{\xi}[F(x,\xi)]$$

Theorem. Let the output of the nonconvex BSG algorithm be $\bar{x}_N = x_z$. If stepsizes satisfy $2\beta_t^{\min} > L(\beta_t^{\max})^2$ for $t = 1, \dots, N$, then we have

$$\mathbb{E}\left[\|\nabla f(\bar{x}_N)\|_2^2\right] \le \frac{f(x_1) - f^* + \sum_{t=1}^N (\beta_t^{\max})^2 C_t}{\sum_{t=1}^N (\beta_t^{\min} - \frac{L}{2}(\beta_t^{\max})^2)},$$

where $f^* = \min_x f(x)$. $C_t = (1 - \frac{L}{2}\beta_t^{\max})\sum_{i=1}^b L\sqrt{\sum_{j< i}(G^2+\sigma^2)}$ + $b\left(AG+rac{L}{2}\sigma^2
ight)$, where G is the gradient bound, L is the Lipschitz constants, σ is the variance bound.

Corollary. The convergence rate of the nonconvex BSG algorithm with constant stepsizes $\mathcal{O}(1/\sqrt{N})$ implies that the sample complexity $N=\mathcal{O}(1/\varepsilon^2)$ in order to find ε -stationary solution.

Experimental Study

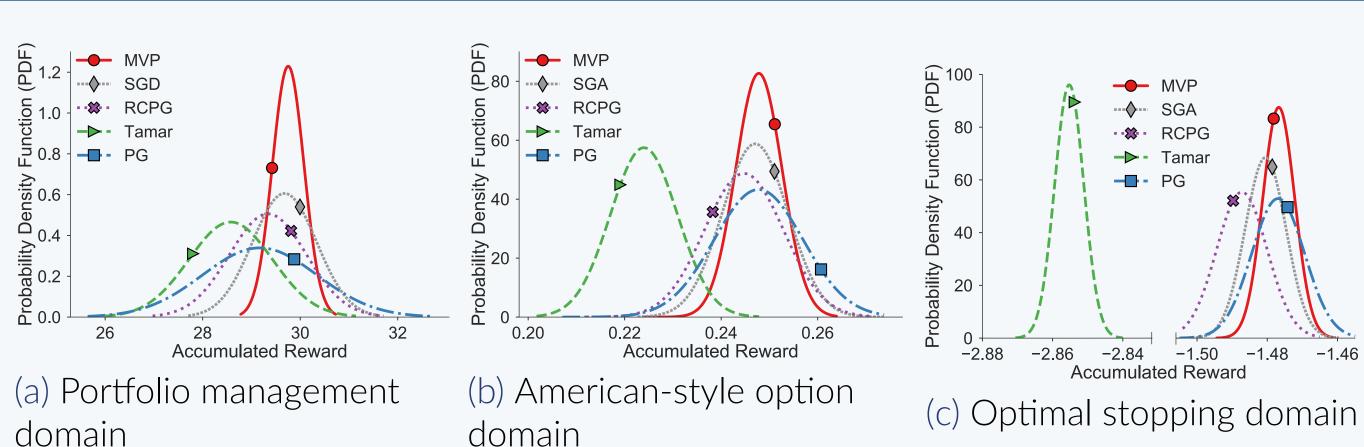


Figure: Empirical results of the distributions of the return (cumulative rewards) random variable. Note that markers only indicate different methods.

Portfolio Management American-style Option Optimal Stopping Std Mean Mean Mean MVP 29.754 0.2478 **-1.4767** 0.00456 **PG** 29.170 0.2477 -1.4769 0.00754 1.177 0.00922 -2.8553 **0.00415 Tamar** 28.575 0.857 0.2240 0.00694 **SGA** 29.679 0.658 -1.4805 0.00583 0.2470 0.00679 **RCPG** 29.340 -1.4872 0.00721 0.789 0.2447 0.00819

Table: Performance Comparison among Algorithms

References

- [1] Gal Dalal, Gugan Thoppe, Balázs Szörényi, and Shie Mannor. Finite sample analysis of two-timescale stochastic approximation with applications to reinforcement learning. In Proceedings of the 31st Conference On Learning Theory, pages 1199--1233. PMLR, 06--09 Jul 2018.
- [2] Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance related risk criteria. In Proceedings of the twenty-ninth international conference on machine learning, pages 387--396, 2012.