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Introduction PEORL Architecture

Symbolic planning and reinforcement learning have both been used to create agents that behave

intelligently 1n I‘eal W()I'ld move(e) causes pos(X,Y + 1) if pos(X,Y)

move(e) causes quality = C+ Z

«— not pos(3, 5, k).

if pos(X,Y), p(pos(X, Y), move(e)) = Z, quality = C < quality = quality(n)
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Can symbolic planning and reinforcement learning mutually benefit each other for

decision making? |
* Symbolic planning uses domain knowledge to guide RL for meaningful exploration
* RL helps symbolic planning to generate adaptive and robust plan to handle domain Rii1(sp,a)) < (1 — a)R,(ss, ap) + oy (ry — pi(sy) + max, Ri(se41,a)

uncertainty and change pr+1(8y) <« (1 = Bp.(sy) + B (ry + max, R,(s4+1,a) — max, R,(s;,a))

Background: Symbolic Planning

* Symbolic planning concerns on using a formal, logic-based language to describe prior Experiment

knowledge of the dynamic domain, and automate reasoning and planning in the domain.

. . . | he fi Kk 1 10s: Taxi ' ' 1
» Action languages based on Answer Set Programming, such as BC (Lee, Yang and Lifschitz, SO TS TR OIS W0 ORI T T e i

2013), can be used to automated planning utilizing answer set solver such as Clingo. * In Taxi Scenario 1, every movement (north, south, west, east) receives -1 reward , successful

drop off: +10, improper pickup or drop off: -10. In this scenario, planning agent behaves best

because planner favors shorter plan, yet PEORL agent converges to optimal after explored
impossible Loc(B,) = B,Loc(Bs) = B (B, # Ba). .
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The effect of moving a block: h - * In Gridworld, the robot needs to navigate around a T-shaped bumping area and arrive at the
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nonexecuta ovel B, L)W Loc{By)» B
Meta Symbolic Symbolic Plan £ * PEORL agent converges to the most rewarding plan and learns the policy of operating the
! State . 2 door, effectively reduces execution failure in comparison to planning agent that cannot learn
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OnAable)on(C.B),  On(AB)on(B.C), S * In all scenarios, PEORL agent converges to optimal behavior a lot faster than RL agent,
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thanks to equipped with domain knowledge.

Plan: 1:Move(C.,table), 2: Move(B,C), 3:Move(A,B)
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* Reinforcement learning is defined on a Markov Process (S, 4, P&, 1,7). ] l , | T ;" »
» : - : : | s | e ,m" !l.-
* The agent has no knowledge about the transition matrix and probability, and by interacting | | & € -0 W W , ‘ \ | H {
with the environment, it learns a policy m: SXA — [0,1] to accumulative maximal reward. ' : e B , oo, | ], Il WUV Y {0 = Rcogent
. : . (a) Taxi domai (b) A soluti = Fogent . ‘ - P-agent
 R-learning (Schwartz, 1993; Mahadevan, 1996), different from Q-learning, concerns on long VR o OOl e ks PEORLagent) | e oo — vy PEORL-agent |
. . . E SOdeS isodes
term average reward and is particularly suitable for | . - , e
(¢) Learning curves on Taxi domain (d) Learning curves with the extra reward
p lannlng and SCthU.llIlg tasks. Agent Figure 2: Taxi domain
* R-learning iterates on two values: long term average
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 PEORL framework stands for Planning-Execution-Observation-Reinforcement Learning that
features bi-directional communication between planning and learning.
* In PEORL, causal laws 1n action language has effect on cumulative plan quality. Conclusion
 PEORL planning goal contains two parts: a logical constraint stating the goal state condition,
and a linear constraints to enforce generating ’better quality plan”. * We show that by integrating symbolic planning with hierarchical RL (hierarchical R-learning

in particular), planning and RL can mutually benefit each other to make robust decisions. It 1s
the first work of that features bi-directional communication between planning and RL.
move(e) activate push

e (») (=) (OS> mansitons C—"—(———(@)——®)  Future work involves integrating symbolic planning with deep RL, investigation on
transferability, and itegration with automatic option discovery.

* Symbolic actions are mapped to “options”, in the sense of hierarchical RL to learn.
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(a) The mapping from a symbolic transition path to options (b) The option mapping for transitions £y, £2, 3
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Figure 1: Mappings from symbolic transitions to options
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